Advertisement

Marine Biology

, Volume 160, Issue 10, pp 2597–2607 | Cite as

Occurrence of a cold-water coral along natural pH gradients (Patagonia, Chile)

  • C. JantzenEmail author
  • V. Häussermann
  • G. Försterra
  • J. Laudien
  • M. Ardelan
  • S. Maier
  • C. Richter
Original Paper

Abstract

Increasing dissolution of anthropogenic-released carbon dioxide into the world’s oceans is causing ocean acidification (OA). OA is thought to negatively affect most marine-calcifying organisms, notably cold-water corals (CWC), which may be especially sensitive due to the deep and cold waters they normally thrive in. However, the impact of OA on CWC is difficult to predict. Recorded distributions of CWC are rarely linked to in situ water chemistry, and the boundaries of their distributions are not clearly defined. The fjord Comau in Chilean Patagonia features pronounced pH gradients, and up to 0.5 pH units have been recorded both vertically (at some sites within 50 m depth) and less distinct horizontally (from head to mouth). The cosmopolite coral Desmophyllum dianthus grows along the course of the fjord and of the entire pH range. It occurs in shallow depths (below 12 m, pH 8.1) as part of a deep-water emergence community, but also in 225 m depth at a pH of 7.4. Based on pH and total alkalinity, data calculations of the associated carbonate chemistry revealed that this CWC thrives commonly close the aragonite (the orthogonal crystal form of calcium carbonate, the mineral structure of coral skeletons) saturation horizon and even below. This suggests a high adaptation potential of D. dianthus to adjust its calcification performance to conditions thermodynamically unfavourable for the precipitation of aragonite.

Keywords

Ocean Acidification Boron Isotope Tropical Coral Aragonite Saturation Saturation Horizon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This is paper No. 61 of the Huinay Scientific Field Station. We thank the team of the Fundacion Huinay especially Reinhard Fitzek, Emma Plotnek, Dan Genter and Soledad Gonzales. We acknowledge the help of all scientific divers involved in the field work. We are indebted to assistants during CTD profiling, namely Richard Steinmetz, Sebastian Baumgarten, Michael Sswat, Stefanie Sokol, Franziska Kupprat, Santiago Pineda Metz, Maria Ernsthaler and Aaron Mascarenhas. Thanks to Riccardo Rodolfo-Metalpa and an anonymous reviewer, who help us to considerably improve the ms. Last not least special thanks to Emma Plotnek and Ruth Alheit for English editing.

Supplementary material

227_2013_2254_MOESM1_ESM.doc (32 kb)
Desmophyllum dianthus occurrence. Sites of D. dianthus sightings by SCUBA or ROV investigations. Where a depth range is given. D. dianthus was not recorded continuously, but repeatedly and commonly found (DOC 31 kb)
227_2013_2254_MOESM2_ESM.eps (74.4 mb)
Fjord profiles conducted at 5 May 2010 till 60 m with a CTD-probe in vertical (with depth) and horizontal (fjord’s course) resolution. Negatively increasing values indicate the direction towards the fjord head; 0 corresponds to the fjord mouth and positive values reach into the Gulf of Ancud. a pH (in NBS scale); b oxygen saturation (EPS 76233 kb)
227_2013_2254_MOESM3_ESM.eps (9.2 mb)
Vertical profile at mid-fjord showing oxygen saturation. The CTD depth profile till 336 m was conducted on 24 May 2010 (EPS 9387 kb)
227_2013_2254_MOESM4_ESM.eps (35.2 mb)
pH conditions in the Southern Pacific. Data were obtained from the CARINA project (The CARINA Group 2008, CARINA Data Synthesis Project. ORNL/CDIAC-157, NDP-091. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee. doi: 10.3334/CDIAC/otg.ndp091) and pH of sea water was calculated with ‘Ocean Data View’ (Schlitzer 2011, using depth, temperature, TA and DIC); the transect was conducted along the 30°–32.5°S (EPS 36082 kb)
227_2013_2254_MOESM5_ESM.eps (35.2 mb)
Fjord profiles 2011. Profiles with a CTD-probe in vertical (with depth) and horizontal (fjord’s course) resolution; negatively increasing values indicate the direction towards the fjord head; 0 corresponds to the fjord mouth and positive values reach into the Gulf of Ancud. PH is given on the total scale. a (24, 25 February 2011; b 3 March 2011; white areas where data were not available (EPS 36040 kb)

References

  1. Adkins JF, Henderson GM, Wang SL, O’Shea S, Mokadem F (2004) Growth rates of the deep-sea scleractini Desmophyllum cristagalli and Enallopsammia rostrata. Earth Planet Sci Lett 227(3–4):481–490CrossRefGoogle Scholar
  2. Allemand D, Ferrier-Pages C, Furla P, Houlbreque F, Puverel S, Reynaud S, Tambutte E, Tambutte S, Zoccola D (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. CR Palevol 3:453–467CrossRefGoogle Scholar
  3. Allemand D, Tambutte E, Zoccola D, Tambutte S (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, New York. doi: 10.1007/978-94-007-0114-4_9
  4. Atkinson JM, Cuet P (2008) Possible effects of ocean acidification on coral reef biogeochemistry, topics for research. Mar Ecol Prog Ser 373:249–256CrossRefGoogle Scholar
  5. Blanco JL, Thomas AC, Carr ME, Strub PT (2001) Seasonal climatology of hydrographic conditions in the upwelling region off northern Chile. J Geophys Res 106:11451–11467CrossRefGoogle Scholar
  6. Brooke S, Young CM (2009) In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar Ecol Prog Ser 397:153–161CrossRefGoogle Scholar
  7. Cairns SD (1982) Antarctic and Subantarctic Scleractinia. Antarctic Res Ser 34(1):74Google Scholar
  8. Cairns SD, Försterra G, Häussermann V (2005) A review of the Scleractinia (Cnidaria, Anthozoa) of Chile, with the description of two new species. Zootaxa 118:15–46Google Scholar
  9. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365CrossRefGoogle Scholar
  10. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:C09S04. doi: 10.1029/2004JC002671 CrossRefGoogle Scholar
  11. Cao L, Caldeira K (2008) Atmospheric CO2 stabilization and ocean acidification. Geophys Res Lett 35:L19609. doi: 10.1029/2008GL035072 CrossRefGoogle Scholar
  12. CARINA Group (2008) CARINA Data Synthesis Project. ORNL/CDIAC-157, NDP-091. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge Tennessee. doi: 10.3334/CDIAC/otg.ndp091
  13. Cohen AL, Holcomb M (2009) Why corals care about ocean acidification. Oceanography 22:118–127CrossRefGoogle Scholar
  14. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  15. De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323:116–119CrossRefGoogle Scholar
  16. Dickson A, Goyet C (1991) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. http//cdiac.ornl.gov/oceans/Handbook_2007.html
  17. Dickson AG, Sabine CL, Christian JR (eds) (2007) Guide to best practices for ocean CO2 measurements, vol 3. PICES Special Publication, 191ppGoogle Scholar
  18. Dodds LA, Roberts JM, Taylor AC, Marubini F (2007) Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J Exp Mar Biol Ecol 349:205–214CrossRefGoogle Scholar
  19. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification, the other CO2 problem. Annu Rev Mar Sci 1:169–192CrossRefGoogle Scholar
  20. Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1:165–169CrossRefGoogle Scholar
  21. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432CrossRefGoogle Scholar
  22. Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, Mackenzie FT, Moore B III, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle, a test of our knowledge of earth as a system. Science 290:291–296CrossRefGoogle Scholar
  23. Feely RA, Sabine CL, Lee K, Millero FJ, Lamb MF, Greeley D, Bullister JL, Key RM, Peng TH, Kozyr A, Ono T, Wong CS (2002) In situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochem Cycles 16(4):1144CrossRefGoogle Scholar
  24. Feely RA, Sabine CL, Kitack L, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366CrossRefGoogle Scholar
  25. Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:1811CrossRefGoogle Scholar
  26. Form A, Riebesel U (2012) Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob Change Biol 18:843–853CrossRefGoogle Scholar
  27. Försterra G, Häussermann V (2003) First report on large scleractinian (Cnidaria, Anthozoa) accumulations in cold-temperate shallow water of south Chilean fjords. Zool Verhand (Leiden) 345:117–128Google Scholar
  28. Försterra G, Häussermann V (2008) Unusual symbiotic relationships between microendolithic phototrophic organisms and azooxanthellate cold-water corals from Chilean fjords. Mar Ecol Prog Ser 370:121–125CrossRefGoogle Scholar
  29. Försterra G, Beuck L, Häussermann V, Freiwald A (2005) Shallow-water Desmophyllum dianthus (Scleractinia) From Chile, characteristics of the biocoenoses, the bioeroding community, heterotrophic interactions and (paleo)-bathymetric implications. Cold-water corals and ecosystems. Springer, Berlin, p 937–977Google Scholar
  30. Freiwald A, Fosså SJH, Grehan A, Koslow A, Roberts JM (2004) Cold-water coral reefs, out of sight—no longer out of mind. UNEP-WCMC, CambridgeGoogle Scholar
  31. Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457Google Scholar
  32. Gallardo VA, Försterra G, Häussermann V, Faundez J (2005) Hallazgo de sistemas bacterianos sulfurosos someros asociados a la actividad hidrotermal del Fiordo, X Región. Annual COLACMAR meeting, May16-20 2005, Viña del Mar, ChileGoogle Scholar
  33. Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183Google Scholar
  34. Goreau TF, Goreau NI, Goreau TF (1979) Corals and coral reefs. Sci Am 241:124–136CrossRefGoogle Scholar
  35. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293CrossRefGoogle Scholar
  36. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. ICES J Mar Sci 50:839–866Google Scholar
  37. Holcomb MC, Cohen AL, McCorkle DC (2010) Gender bias in the coral response to ocean acidification. In: 2010 Ocean sciences meeting, Portland, OR Google Scholar
  38. Hoppe CJM, Langer G, Rokitta SD, Wolf-Gladrow DA, Rost B (2012) Implications of observed inconsistencies in carbonate chemistry measurements for ocean acidification studies. Biogeosciences 9:2401–2405CrossRefGoogle Scholar
  39. Jantzen C, Laudien J, Häussermann V, Försterra G, Richter C (2012) Cold water corals exhibit CaCO3 precipitation comparable to their tropical counterparts—but only in situ. In: 5th symposium on deep-sea corals 2012Google Scholar
  40. Jantzen C, Laudien J, Sokol S, Försterra, G, Häussermann V, Kupprat F, Richter C (2013) In situ short-term growth rates of a cold-water coral. Marine Freshw Res (accepted)Google Scholar
  41. Jury C, Whitehead RF, Szmant A (2010) Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (=Madracis mirabilis sensu Wells, 1973), bicarbonate concentrations best predict calcification rates. Glob Change Biol 16:1632–1644CrossRefGoogle Scholar
  42. Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN. http//cdiac.ornl.gov/oceans/co2rprt.html
  43. Maier C, Hegeman J, Weinbauer MG, Gattuso JP (2009) Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 6:1671–1680. doi: 10.5194/bg-6-1671-2009 CrossRefGoogle Scholar
  44. Maier C, Watremez P, Taviani M, Weinbauer MG, Gattuso JP (2012) Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc R Soc B 279:1716–1723CrossRefGoogle Scholar
  45. Marubini F, Ferrier-Pagès C, Furla P, Allemande D (2008) Coral calcification responds to seawater acidification, a working hypothesis towards a physiological mechanism. Coral Reefs 27:491–499CrossRefGoogle Scholar
  46. McCulloch M, Falter J, Trotter J, Montagna P (2012a) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Climate Change 2:1–5. doi: 10.1038/nclimate1473 CrossRefGoogle Scholar
  47. McCulloch M, Trotter J, Montagna P, Falter J, Dunbar R, Freiwald A, Försterra G, López Correa M, Maier C, Rüggeberg A, Taviani M (2012b) Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim Cosmochim Acta 87:21–34CrossRefGoogle Scholar
  48. Meibom A, Mostefaoui S, Cuif JP, Dauphin Y, Houlbreque F, Dunbar R, Constantz BR (2007) Biological forcing controls the chemistry of reef-building coral skeleton. Geophys Res Lett 34:L02601CrossRefGoogle Scholar
  49. Millero FK (2006) Chemical oceanography, 3rd edn. CRC, Boca RatonGoogle Scholar
  50. Montero P, Daneri G, González HE, Iriarte JL, Tapia FJ, Lizárraga L, Sánchez N, Pizarro O (2011) Seasonal variability of primary production in a fjord ecosystem of the Chilean Patagonia, implications for the transfer of carbon within pelagic food webs. Cont Shelf Res 31:202–215CrossRefGoogle Scholar
  51. Morales CE, Blanco JL, Barun M, Reyes R, Silva N (1993) Chlorophyll-a distribution and associated oceanographic conditions in the upwelling region of northern Chile during the winter and spring. Deep Sea Res 43:267–289CrossRefGoogle Scholar
  52. Mortensen PB (2001) Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (Scleractinia) and selected associated invertebrates. Ophelia 54:83–104CrossRefGoogle Scholar
  53. Naumann MS, Orejas C, Wild C, Ferrier-Pages C (2011) First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J Expr Biol 214:3570–3576CrossRefGoogle Scholar
  54. Nemzer BV, Dickson AG (2005) The stability and reproducibility of tris buffers in synthetic seawater. Mar Chem 96:237–242CrossRefGoogle Scholar
  55. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  56. Pantoja S, Iriarte JL, Daneri G (2011) Oceanography of the Chilean Patagonia. Cont Shelf Res 31:149–153CrossRefGoogle Scholar
  57. Riebesell U (2008) Climate change, acid test for marine biodiversity. Nature 454:46–47CrossRefGoogle Scholar
  58. Riebesell U, Fabry VJ, Hansson L, Gattuso JP (eds) (2010) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg, p 260Google Scholar
  59. Ries J (2011) A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochim Cosmochim Acta. doi: 10.1016/j.gca.2011.04.025 Google Scholar
  60. Risk MJ, Heikoop JM, Snow MG, Beukens R (2002) Lifespans and growth patterns of two deep-sea corals: Primnoa resedaeformis and Desmophyllum cristagalli. Hydrobiologia 471:125–131CrossRefGoogle Scholar
  61. Roberts JM, Anderson RM (2002) A new laboratory method of monitoring deep-sea coral polyp behaviour. Hydrobiologia 471:143–148CrossRefGoogle Scholar
  62. Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 28:543–547CrossRefGoogle Scholar
  63. Roberts MJ, Wheeler AJ, Freiwald A, Cairns S (2009) Cold-water corals. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  64. Rodolfo-Metalpa R, Martin S, Ferrier-Pages C, Gattuso JP (2010) Response of the temperate coral Cladocora caespitosa to mid-and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7:289–300CrossRefGoogle Scholar
  65. Rodolfo-Metalpa R, Houlbrèque F, Tambutté É, Boisson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso J-P, Hall-Spencer JM (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Climate Change 1:308–311. doi: 10.1038/NCLIMATE1200 CrossRefGoogle Scholar
  66. Rost B, Zondervan I, Wolf-Gladrow D (2008) Sensitivity of phytoplankton to future changes in ocean carbonate chemistry, current knowledge, contradictions and research directions. Mar Ecol Prog Ser 373:227–237CrossRefGoogle Scholar
  67. Roy RN, Roy LN, Vogel KM, Porter-Moore C, Pearson T, Good CE, Millero FJ, Campell DM (1993) The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperature 0 to 45 °C. Mar Chem 44:249–267CrossRefGoogle Scholar
  68. Sánchez N, González HE, Iriarte JL (2011) Trophic interactions of pelagic crustaceans in Comau Fjord (Chile), their role in the food web structure. J Plankton Res 33(8):1212–1229CrossRefGoogle Scholar
  69. Schlitzer R (2011) Ocean Data View, http//odv.awi.de
  70. Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatype coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293CrossRefGoogle Scholar
  71. Schwabe E, Försterra G, Häussermann V, Melzer RR, Schrödl M (2006) Chitons (Mollusca, Polyplacophora) from the southern Chilean Comau Fjord, with reinstatement of Tonicia calbucensis Plate, 1897. Zootaxa 1341:1–27Google Scholar
  72. Silva N (2008) Dissolved oxygen, pH, and nutrients in the austral Chilean channels and fjords. In: Silva N, Palma S (eds) Progress in the oceanographic knowledge of Chilean inner waters, from Puerto Montt to Cape Horn. Comité Oceanográfico Nacional-Pontificia Universidad Católica de Valparaíso, Valparaíso, pp 37–43Google Scholar
  73. Smith SV, Kinsey DW (1978) Calcification and organic carbon metabolism as indicated by carbon dioxide. In: Stoddart DR, Johannes RE (eds) Coral reefs: research methods. UNESCO, Paris, pp 469–484Google Scholar
  74. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C et al (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Res II 56(5):54–577Google Scholar
  75. Tambutté S, Holcomb M, Ferrier-Pages C, Reynaud S, Tambutte E, Zoccola D, Allemand D (2011) Coral biomineralization: from the gene to the environment. J Exp Mar Biol Ecol 408(1–2):58–78CrossRefGoogle Scholar
  76. Thresher RE, Tilbrook B, Fallon S, Wilson NC, Adkins J (2011) Effects of chronic low carbonate saturation levels on the distribution, growth and skeletal chemistry of deep-sea corals and other seamount megabenthos. Mar Ecol Prog Ser 442:87–99CrossRefGoogle Scholar
  77. Torres R, Frangópulos M, Hamamé M, Montecino V, Maureira C, Pizarro G, Reid B, Valle-Levinson A, Blanco JL (2011a) Nitrate to silicate ratio variability and the composition of micro-phytoplankton blooms in the inner-fjord of Seno Ballena (Strait of Magellan, 54°S). Cont Shelf Res 31:149–366CrossRefGoogle Scholar
  78. Torres R, Pantoja S, Harada N, González HE, Daneri G, Frangopulos M, Rutllant JA, Duarte CM, Rúiz-Halpern S, Mayol E, Fukasawa M (2011b) Air-sea CO2 fluxes along the coast of Chile. From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. J Geophys Res 116:C09006. doi: 10.1029/2010JC006344 CrossRefGoogle Scholar
  79. Trotter J, Montagna P, McCulloch M, Silenzi S, Reynaud S, Mortimer G, Martin S, Ferrier-Pagès C, Gattuso JP, Rodolfo-Metalpa R (2011) Quantifying the pH ‘vital effect’ in the temperate zooxanthellate coral Cladocora caespitosa: validation of the boron seawater pH proxy. Earth Planet Sci Lett 303:163–173CrossRefGoogle Scholar
  80. Tsounis G, Orejas C, Reynaud S, Gili J-M, Allemand D, Ferrier-Pagès C (2010) Prey-capture rates in four Mediterranean cold water corals. Mar Ecol Prog Ser 398:149–155CrossRefGoogle Scholar
  81. Venn AA, Tambutté E, Holcomb M, Laurent J, Allemand D, Tambutté S (2013) Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. Proc Natl Acad Sci USA 110(5):1634–1639. doi: 10.1073/pnas.1216153110 CrossRefGoogle Scholar
  82. Vézina AF, Hoegh-Guldberg O (2008) Effects of ocean acidification on marine ecosystems—introduction to theme section. Mar Ecol Progr Ser 373:199–201CrossRefGoogle Scholar
  83. Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. Proc R Soc B 275:1767–1773CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. Jantzen
    • 1
    Email author
  • V. Häussermann
    • 2
  • G. Försterra
    • 2
  • J. Laudien
    • 1
  • M. Ardelan
    • 3
  • S. Maier
    • 1
  • C. Richter
    • 1
  1. 1.Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  2. 2.Facultad de Recursos Naturales, Escuela de Ciencias del MarPontificia Universidad Catolica de ValparaısoValparaisoChile
  3. 3.Department of ChemistryNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations