Skip to main content
Log in

Temporal dynamics and plasticity in the cellular immune response of the sea fan coral, Gorgonia ventalina

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The temporal dynamics of the invertebrate immune response often determines an organism’s success in responding to physiological stress, physical damage, and pathogens. To date, most immune challenge studies have been conducted under highly controlled laboratory conditions, with few attempts to study immune function in the wild. In this study, we characterized the temporal dynamics of the Caribbean sea fan, Gorgonia ventalina, cellular immune response [granular amoebocyte aggregation and prophenoloxidase (PPO) activation] to allogenic grafts in the laboratory and field using a clonally replicated design. Amoebocyte reaction time differed markedly between the lab (% amoebocyte surface area in tissue sections peaked at 2 days) and field (peak at 6 days). PPO activity decreased between 0 and 6 days after grafting in both ungrafted and grafted tissue, suggesting PPO is decoupled from other cellular components. The reaction norms of the fold induction in % amoebocyte area between disease-grafted and healthy-grafted tissue of each colony across time indicate high intercolony plasticity in cellular immune response. The plasticity between colonies was also evident in the magnitude of cellular immune response, ranging from a 0.88- to 1.60-fold increase in amoebocyte area between initial and 6 days for the disease-grafted tissue. With the demonstration of highly dynamic cnidarian cellular immune responses, our study expands understanding of the evolutionary ecology of metazoan immune defense mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adema CM, van Deutekom-Mulder EC, van der Knaap WP, Meuleman EA, Sminia T (1991) Generation of oxygen radicals in hemocytes of the snail Lymnaea stagnalis in relation to the rate of phagocytosis. Dev Comp Immunol 15:17–26

    Article  CAS  Google Scholar 

  • Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406:782–787

    Article  CAS  Google Scholar 

  • Aladaileh S, Nair SV, Raftos DA (2007) Induction of phenoloxidase and other immunological activities in Sydney rock oysters challenged with microbial pathogen-associate molecular patterns. Fish Shellfish Immunol 23:1196–1208

    Article  CAS  Google Scholar 

  • Alker AP, Kim K, Dube DH, Harvell CD (2004) Localized induction of a generalized response against multiple biotic agents in Caribbean sea fans. Coral Reefs 23:397–405

    Article  Google Scholar 

  • Amar KO, Rinkevich B (2010) Mounting of erratic histoincompatible responses in hermatypic corals: a multi-year interval comparison. J Exp Biol 213:535–540

    Article  Google Scholar 

  • Araya MT, Markham F, Mateo DR, McKenna P, Johnson GR, Berthe FCJ, Siah A (2010) Identification and expression of immune-related genes in hemocytes of soft-shell clams, Mya arenaria, challenged with Vibrio splendidus. Fish Shellfish Immunol 29:557–564

    Article  CAS  Google Scholar 

  • Augustin R, Bosch TCG (2010) Cnidarian immunity: a tale of two barriers invertebrate immunity. In: Invertebrate Immunity. Springer, US, pp 1–16

  • Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979

    Article  CAS  Google Scholar 

  • Baayen RH, Davidson DJ, Bates DM (2008) Mixed-effects modeling with crossed random effects for subjects and items. J Mem Lang 59:390–412

    Article  Google Scholar 

  • Bates D, Maechler M (2009) lme4: linear mixed-effects models using S4 classes. R package version 0.999375-32

  • Beck G, O’Brien RF, Habicht GS, Stillman DL, Cooper EL, Raftos DA (1993) Invertebrate cytokines III: invertebrate interleukin-1-like molecules stimulate phagocytosis by tunicate and echinoderm cells. Cell Immunol 146:284–299

    Article  Google Scholar 

  • Bigger CH, Hildemann WH (1982) Cellular defense systems of the coelenterata. In: Cohen N, Sigel MM (eds) The reticuloendothelial system. Plenum Press, New York, pp 59–87

    Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  Google Scholar 

  • Borges JCS, Jensch BE, Garrido PAG, Baptista MB, Mangiaterra CD, Machado JR, Silva C (2005) Phagocytic amoebocyte sub populations in the perivisceral coelom of the sea urchin, Lytechinus variegatus (Lamarck, 1816). J Exp Zool A Comp Exp Biol 303A:241–248

    Article  Google Scholar 

  • Bosch TC, Augustin R, Anton-Erxleben F, Fraune S, Hemmrich G, Zill H, Rosenstiel P, Jacobs G, Schreiber S, Leippe M (2009) Uncovering the evolutionary history of innate immunity: the simple metazoan Hydra uses epithelial cells for host defence. Dev Comp Immunol 33:559–569

    Article  CAS  Google Scholar 

  • Bourne D, Iida Y, Uthicke S, Smith-Keune C (2007) Changes in coral-associated microbial communities during a bleaching event. ISME J 2:350–363

    Article  Google Scholar 

  • Bruno JF, Ellner SP, Vu I, Kim K, Harvell CD (2011) Impacts of aspergillosis on sea fan coral demography: modeling a moving target. Ecol Monogr 81:123–139

    Article  Google Scholar 

  • Burge EJ, Madigan DJ, Burnett LE, Burnett KG (2007) Lysozyme gene expression by hemocytes of Pacific white shrimp, Litopenaeus vannamei, after injection with Vibrio. Fish Shellfish Immunol 22:327–339

    Article  CAS  Google Scholar 

  • Burge CA, Douglas N, Conti-Jerpe I, Weil E, Roberts S, Friedman CS, Harvell CD (2012) Friend or foe: the association of Labyrinthulomycetes with the Caribbean sea fan Gorgonia ventalina. Dis Aquat Org 101:1–12

    Article  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer, Berlin

    Google Scholar 

  • Canesi L, Betti M, Ciacci C, Scarpato A, Citterio B, Pruzzo C, Gallo G (2002) Signaling pathways involved in the physiological response of mussel hemocytes to bacterial challenge: the role of stress-activated p38 MAP kinases. Dev Comp Immunol 26:325–334

    Article  CAS  Google Scholar 

  • Cerenius L, Soderhall K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126

    Article  CAS  Google Scholar 

  • Cerenius L, Jiravanichpaisal P, Liu HP, Soderhall I (2010) Crustacean immunity. In: Invertebrate Immunity. Springer, US, pp 239–259

  • Collinge SK, Ray C (2006) Disease ecology: community structure and pathogen dynamics. Oxford University Press, Oxford

    Book  Google Scholar 

  • Coteur G, DeBecker G, Warnau M, Jangoux M, Dubois P (2002) Differentiation of immune cells challenged by bacteria in the common European starfish, Asterias rubens (Echinodermata). Eur J Cell Biol 81:413–418

    Article  Google Scholar 

  • Couch CS, Mydlarz LD, Harvell CD, Douglas NL (2008) Variation in measures of immunocompetence of sea fan coral, Gorgonia ventalina, in the Florida Keys. Mar Biol 155:281–292

    Article  CAS  Google Scholar 

  • Dube D, Kim K, Alker AP, Harvell CD (2002) Size structure and geographic variation in chemical resistance of sea fan corals to a fungal pathogen. Mar Ecol Prog Ser 231:139–150

    Article  Google Scholar 

  • Ellner SP, Jones LE, Mydlarz LD, Harvell CD (2007) Within-host disease ecology in the sea fan Gorgonia ventalina: modeling the spatial immunodynamics of a coral-pathogen interaction. Am Nat 170:E143–E161

    Article  Google Scholar 

  • Ford SE, Kanaley SA, Littlewood DTJ (1993) Cellular responses of oysters infected with Haplosporidium nelsoni: changes in circulating and tissue-infiltrating hemocytes. J Invertebr Pathol 61:49–57

    Article  CAS  Google Scholar 

  • George SG, Pirie BJS, Cheyne AR, Coombs TL, Grant PT (1978) Detoxication of metals by marine bivalves: an ultrastructural study of the compartmentation of copper and zinc in the oyster Ostrea edulis. Mar Biol 45:145–156

    Article  Google Scholar 

  • Gervasi SS, Foufopoulos J (2008) Costs of plasticity: responses to desiccation decrease post-metamorphic immune function in a pond-breeding amphibian. Funct Ecol 22:100–108

    Google Scholar 

  • Goedken M, Morsey B, Sunila I, De Guise S (2005) Immunomodulation of Crassostrea gigas and Crassostrea virginica cellular defense mechanisms by Perkinsus marinus. J Shellfish Res 24:487–496

    Google Scholar 

  • Grenfell BT, Dobson AP (1995) Ecology of infectious diseases in natural populations. Cambridge University Press, Cambridge, MA

    Book  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Ecology—climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  CAS  Google Scholar 

  • Hawley DM, Altizer SM (2011) Disease ecology meets ecological immunology: understanding the links between organismal immunity and infection dynamics in natural populations. Funct Ecol 25:48–60

    Article  Google Scholar 

  • Hutton DMC, Smith VJ (1996) Antibacterial properties of isolated amoebocytes from the sea anemone Actinia equina. Biol Bull 191:441–451

    Article  Google Scholar 

  • Jordan PJ, Deaton LE (2005) Characterization of phenoloxidase from Crassostrea virginica hemocytes and the effect of Perkinsus marinus on phenoloxidase activity in the hemolymph of Crassostrea virginica and Geukensia demissa. J Shellfish Res 24:477–482

    Google Scholar 

  • Kim K, Harvell CD (2002) Aspergillosis of sea fan corals: disease dynamics in the Florida Keys. In: Porter JW, Porter KG (eds) The everglades, Florida bay, and coral reefs of the Florida keys: an ecosystem sourcebook. CRC Press, Boca Raton, pp 813–824

    Google Scholar 

  • Kim K, Harvell CD (2004) The rise and fall of a six-year coral-fungal epizootic. Am Nat 164:S52–S63

    Article  Google Scholar 

  • Kim K, Harvell CD, Kim PD, Smith GW, Merkel SM (2000a) Fungal disease resistance of Caribbean sea fan corals (Gorgonia spp.). Mar Biol 136:259–267

    Article  Google Scholar 

  • Kim K, Kim PD, Alker AP, Harvell CD (2000b) Chemical resistance of gorgonian corals against fungal infections. Mar Biol 137:393–401

    Article  CAS  Google Scholar 

  • Kim K, Alker AP, Shuster K, Quirolo C, Harvell CD (2006) Longitudinal study of aspergillosis in sea fan corals. Dis Aquat Org 69:95–99

    Article  Google Scholar 

  • Korner P, Schmid-Hempel P (2004) In vivo dynamics of an immune response in the bumble bee Bombus terrestris. J Invertebr Pathol 87:59–66

    Article  CAS  Google Scholar 

  • Kramarsky-Winter E (2004) What can regeneration processes tell us about coral disease? In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, pp 217–230

    Chapter  Google Scholar 

  • Kurtz J, Franz K (2003) Innate defence: evidence for memory in invertebrate immunity. Nature 425:37–38

    Article  CAS  Google Scholar 

  • Lambert C, Soudant P, Dégremont L, Delaporte M, Moal J, Boudry P, Jean F, Huvet A, Samain J-F (2007) Hemocyte characteristics in families of oysters, Crassostrea gigas, selected for differential survival during summer and reared in three sites. Aquaculture 270:276–288

    Article  Google Scholar 

  • Loker ES, Adema CM, Zhang SM, Kepler TB (2004) Invertebrate immune systems–not homogeneous, not simple, not well understood. Immunol Rev 198:10–24

    Article  Google Scholar 

  • Malham SK, Lacoste A, Gélébart F, Cueff A, Poulet SA (2003) Evidence for a direct link between stress and immunity in the mollusc Haliotis tuberculata. J Exp Zool A Comp Exp Biol 295A:136–144

    Article  Google Scholar 

  • Mangiaterra MBBCD, Silva JRMC (2001) Induced inflammatory process in the sea urchin Lytechinus variegatus. Invertebr Biol 120:178–184

    Article  Google Scholar 

  • Meszaros A, Bigger C (1999) Qualitative and quantitative study of wound healing processes in the coelenterate, Plexurella fusifera; spatial, temporal, and environmental (light attenuation) influences. J Invertebr Pathol 73:321–331

    Article  CAS  Google Scholar 

  • Miller DJ, Hemmrich G, Ball EE, Hayward DC, Khalturin K, Funayama N, Agata K, Bosch TCG (2007) The innate immune repertoire in Cnidaria—ancestral complexity and stochastic gene loss. Genome Biol 8:R59

    Article  Google Scholar 

  • Mowlds P, Barron A, Kavanagh K (2008) Physical stress primes the immune response of Galleria mellonella larvae to infection by Candida albicans. Microbes Infect 10:628–634

    Article  CAS  Google Scholar 

  • Mullen K, Peters EC, Harvell CD (2004) Coral resistance to disease. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, New York, pp 377–399

    Chapter  Google Scholar 

  • Mullen KM, Harvell CD, Alker AP, Dube D, Jordán-Dahlgren E, Ward JR, Petes LE (2006) Host range and resistance to aspergillosis in three sea fan species from the Yucatan. Mar Biol 149:1355–1364

    Article  Google Scholar 

  • Mydlarz LD, Harvell CD (2007) Peroxidase activity and inducibility in the sea fan coral exposed to a fungal pathogen. Comp Biochem Physiol Part A Mol Integr Physiol 146:54–62

    Article  Google Scholar 

  • Mydlarz LD, Palmer CV (2011) The presence of multiple phenoloxidases in Caribbean reef-building corals. Comp Biochem Physiol Part A Mol Integr Physiol 159:372–378

    Article  Google Scholar 

  • Mydlarz LD, Jones LE, Harvell CD (2006) Innate immunity environmental drivers and disease ecology of marine and freshwater invertebrates. Annu Rev Ecol Syst 37:251–288

    Article  Google Scholar 

  • Mydlarz LD, Holthouse SF, Peters EC, Harvell CD (2008) Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors. PLoS ONE 3:e1811

    Article  Google Scholar 

  • Nagelkerken I, Buchan K, Smith GW, Bonair K, Bush P, Garzon-Ferreira J, Botero L, Gayle P, Harvell CD, Heberer C, Kim K, Petrovic C, Pors L, Yoshioka P (1997) Widespread disease in Caribbean sea fans: II. Patterns of infection and tissue loss. Mar Ecol Prog Ser 160:255–263

    Article  Google Scholar 

  • Nappi AJ, Christensen BM (2005) Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem Mol Biol 35:443–459

    Article  CAS  Google Scholar 

  • Olano CT, Bigger CH (2000) Phagocytic activities of the gorgonian coral Swiftia exserta. J Invertebr Pathol 76:176–184

    Article  CAS  Google Scholar 

  • Palmer CV, Bythell JC, Willis BL (2010) Levels of immunity parameters underpin bleaching and disease susceptibility of reef corals. FASEB J 24:1935–1946

    Article  CAS  Google Scholar 

  • Palmer CV, Bythell JC, Willis BL (2011a) A comparative study of phenoloxidase activity in diseased and bleached colonies of the coral Acropora millepora. Dev Comp Immunol 35:1096–1099

    Article  CAS  Google Scholar 

  • Palmer CV, McGinty ES, Cummings DJ, Smith SM, Bartels E, Mydlarz LD (2011b) Patterns of coral ecological immunology: variation in the responses of Caribbean corals to elevated temperature and a pathogen elicitor. J Exp Biol 214:4240–4249

    Article  CAS  Google Scholar 

  • Palmer CV, Traylor-Knowles NG, Willis BL, Bythell JC (2011c) Corals use similar immune cells and wound-healing processes as those of higher organisms. PLoS ONE 6:e23992

    Article  CAS  Google Scholar 

  • Patterson MJ, Landolt ML (1979) Cellular reaction to injury in the anthozoan Anthopleua elegantissima. J Invertebr Pathol 33:189–196

    Article  Google Scholar 

  • Perrigault M, Allam B (2012) Differential immune response in the hard clam (Mercenaria mercenaria) against bacteria and the protistan pathogen qpx (quahog parasite unknown). Fish Shellfish Immunol 32:1124–1134

    Article  CAS  Google Scholar 

  • Petes LE, Harvell CD, Peters EC, Webb MAH, Mullen KM (2003) Pathogens compromise reproduction and induce melanization in Caribbean sea fans. Mar Ecol Prog Ser 264:167–171

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-plus. Springer, New York, NY

    Book  Google Scholar 

  • Rolff J, Siva-Jothy MT (2003) Invertebrate ecological immunology. Science 301:472–475

    Article  CAS  Google Scholar 

  • Salter-Cid L, Bigger CH (1991) Alloimmunity in the gorgonian coral Swiftia exserta. Biol Bull 181:127–134

    Article  Google Scholar 

  • Salzet M (2001) Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Trends Immunol 22:285–288

    Article  CAS  Google Scholar 

  • Schmid-Hempel P (2003) Variation in immune defense as a question of evolutionary ecology. Proc R Soc Biol Sci Ser B 270:357–366

    Article  Google Scholar 

  • Schmid-Hempel P (2005) Evolutionary ecology of insect immune defenses. Annu Rev Entomol 50:529–551

    Article  CAS  Google Scholar 

  • Song LS, Wang LL, Qiu LM, Zhang HA (2010) Bivalve immunity invertebrate immunity. Springer, Berlin, pp 44–65

    Book  Google Scholar 

  • Stearns SC (1976) Life-history tactics: a review of the ideas. Q Rev Biol 51:3–47

    Article  CAS  Google Scholar 

  • Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268

    Article  Google Scholar 

  • Thurber RV, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, Dinsdale E, Kelly L, Rohwer F (2009) Metagenomic analysis of stressed coral holobionts. Environ Microbiol 11:2148–2163

    Article  CAS  Google Scholar 

  • Travers M-A, Le Bouffant R, Friedman CS, Buzin F, Cougard B, Huchette S, Koken M, Paillard C (2009) Pathogenic Vibrio harveyi, in contrast to non-pathogenic strains, intervenes with the p38 MAPK pathway to avoid an abalone haemocyte immune response. J Cell Biochem 106:152–160

    Article  CAS  Google Scholar 

  • Vargas-Angel B, Peters EC, Kramarsky-Winter E, Gilliam DS, Dodge RE (2007) Cellular reactions to sedimentation and temperature stress in the Caribbean coral Montastraea cavernosa. J Invertebr Pathol 95:140–145

    Article  Google Scholar 

  • Vidal-Dupiol J, Ladriere O, Destoumieux-Garzon D, Sautiere PE, Meistertzheim AL, Tambutte E, Tambutte S, Duval D, Foure L, Adjeroud M, Mitta G (2011) Innate immune responses of a scleractinian coral to vibriosis. J Biol Chem 286:22688–22698

    Article  CAS  Google Scholar 

  • Ward JR (2007) Within-colony variation in inducibility of coral disease resistance. J Exp Mar Biol Ecol 352:371–377

    Article  Google Scholar 

  • Ward JR, Kim K, Harvell CD (2007) Temperature affects coral disease resistance and pathogen growth. Mar Ecol Prog Ser 329:115–121

    Article  Google Scholar 

  • Woolhouse ME, Haydon DT, Antia R (2005) Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol Evol 20:238–244

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgments

We thank E. Bartels of the Mote Tropical Research Laboratory on Summerland Key for collecting the corals used in the laboratory experiment under Florida Keys National Marine Sanctuary permit number FKNMS-2008-001. We thank D. Anderson, S. Harris, A. Anton, and V. Schutte for field support. Funding support was provided by National Geographic and the National Science Foundation grant number OCE0849776. Partial funding was provided by the GEF-World Bank CRTR program to E. Weil, and the Department of Marine Sciences, University of Puerto Rico, Mayaguez, provided partial funding and logistical support. Thanks to C. Burge, M. Mouchka, A. Tracy, N. Douglas, E. Peters, J. Thaler and I. Hewson for manuscript reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Courtney S. Couch.

Additional information

Communicated by T. Reusch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couch, C.S., Weil, E. & Harvell, C.D. Temporal dynamics and plasticity in the cellular immune response of the sea fan coral, Gorgonia ventalina . Mar Biol 160, 2449–2460 (2013). https://doi.org/10.1007/s00227-013-2240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2240-6

Keywords

Navigation