Skip to main content
Log in

How wave exposure, group size and habitat complexity influence foraging and population densities in fishes of the genus Halichoeres (Perciformes: Labridae) on tropical rocky shores

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Wave exposure and habitat complexity have been used to explain variations in the distribution patterns and behavior of many reef fishes. This study analyzed the influence of both factors on density and foraging activity, and the influence of group size on foraging in three species of the genus Halichoeres (Labridae) on tropical rocky shores. It was shown that initial phases (IP) and terminal phases (TP) Halichoeres, were influenced by wave exposure, although foraging in Halichoeres brasiliensis TP was not influenced by wave exposure. The IP in all three species were positively associated with rugosity and algal cover while the TP was positively associated with depth. Habitat complexity also influences foraging in these species. Group size influenced foraging activity, except in H. brasiliensis TP. We also found variations in microhabitat patches used for foraging between species and differences in the stomach contents between species and phases, showing that functional roles change in response to ontogenetic shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angradi T, Hood R (1998) An application of the plaster dissolution method for quantifying water velocity in the shallow hyporheic zone of an Appalachian stream system. Fresh Biol 39:301–315

    Article  Google Scholar 

  • Arbuto-Oropeza O, Balart EF (2001) Community structure of reef fish in several habitats of a rocky reef in the Gulf of California. Mar Ecol 22(4):283–305

    Article  Google Scholar 

  • Azevedo G (2009). Atividade alimentar e uso do hábitat por diferentes fases ontogenéticas de Halichoeres poeyi (Pisces: Labridae) em Arraial do Cabo, Rio de Janeiro. Dissertation, Universidade Federal Fluminense

  • Barros F, Underwood AJ, Lindegarth M (2001) The influence of rocky reefs on structure of benthic macrofauna in nearby soft sediments. Estuar Coast Shelf Sci 52:191–199

    Article  CAS  Google Scholar 

  • Bell WJ (1991) Searching behaviour: the behavioural ecology of finding resources. Chapman and Hall, London

    Google Scholar 

  • Bellwood DR, Wainwright PC (2001) Locomotion in labrid fishes: implications for habitat use and cross-shelf biogeography on the Great Barrier Reef. Coral Reefs 20:139–150. doi:10.1007/s003380100156

    Article  Google Scholar 

  • Bellwood DR, Wainwright PC (2002) The history and biogeography of fishes on coral reefs. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 5–32

    Chapter  Google Scholar 

  • Bonaldo RM, Krajewski JP, Sazima C, Sazima I (2006) Foraging activity and resource use by three parrotfish species at Fernando de Noronha Archipelago, tropical West Atlantic. Mar Biol 149(3):423–433

    Article  Google Scholar 

  • Bonsack JA, Bannerot SP (1986) A stationary visual technique for quantitatively assessing community structure of coral reef fishes. NOAA Tech Rep NMFS 41:1–11

    Google Scholar 

  • Buckel JA, Stoner AW (2004) Negative effects of increasing group size on foraging in two estuarine piscivores. J Exp Mar Biol Ecol 307:183–196

    Article  Google Scholar 

  • Carvalho-Filho A (1999) Peixes, Costa Brasileira, 3a edn. Ed. Melro, São Paulo

    Google Scholar 

  • Chabanet P, Ralambondrainy H, Amanieu M, Faure G, Galzin R (1997) Relationships between coral reef substrata and fish. Coral Reef 16:93–102

    Article  Google Scholar 

  • Chaves LCT, Monteiro-Neto C (2009) Comparative analysis of rocky reef fish community structure in coastal islands of south-eastern Brazil. J Mar Bio Assoc UK 89(3):609–619

    Article  Google Scholar 

  • Choat JH, Ayling AM (1987) The relationship between habitat structure and fish faunas on New Zealand reefs. J Exp Mar Biol Ecol 110:257–284. doi:10.1016/0022-0981(87)90005-0

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) Changes in marine communities: an approach to statistical analysis and interpretation, 2nd edn. Plymouth Marine Laboratory, PRIMER-E, Plymouth

    Google Scholar 

  • Clifton KE (1991) Subordinate group members act as foof-finders within striped parrotfishes territories. J Exp Mar Bio Ecol 145:141–148

    Article  Google Scholar 

  • Colar DC, Wainwright PC, Alfaro ME (2008). Integrated diversification of locomotion and feeding in labrid fishes. Biol Lett. doi:10.1098/rsbl.2007.0509

  • Coni EOC, Nunes JACC, Sampaio CLS (2007) Halichoeres penrosei (Labridae), a sporadic cleaner wrasse. JMBA2 Mar Biodivers Rec 1:e82. doi:10.1017/S1755267207008494

    Article  Google Scholar 

  • Coni EOC, Nunes JACC, Ferreira CM, Maia-Nogueira R, Medeiros DV, Sampaio CLS (2010) The Spanish hogfish Bodianus rufus (Labridae) acting as cleaner of nocturnal fish in the north-east of Brazil. JMBA2 Mar Biodivers Rec 3:e23. doi:10.1017/S1755267210000187

    Article  Google Scholar 

  • Covich AP (1976) Analyzing shapes of foraging areas: some ecological and economic theories. Annu Rev Ecol Syst 7:235–257

    Article  Google Scholar 

  • Crossman DJ, Choat JH, Clements KD (2005) Detritus as food for grazing fishes on coral reefs. Limnol Oceanogr 46:1596–1605

    Article  Google Scholar 

  • Curley BG, Kingsford MJ, Gillanders BM (2002) Spatial and habitat-related patterns of temperate reef fish assemblages: implications for the design ofmarine protected areas. Mar Freshw Res 53:1197–1210. doi:10.1071/MF01199

    Article  Google Scholar 

  • DeLoach N, Humann P (1999) Reef fish behavior: Florida, Caribbean, Bahamas. New World Publications Inc., Jacksonville, p 359

  • Denny CM, Schiel DR (2001) Feeding ecology of the banded wrasse Notolabrus fucicola (Labridae) in southern New Zealand: prey items, seasonal differences, and ontogenetic variation. N Z J Mar Freshw Res 35:925–933. doi:10.1080/00288330.2001.9517054

    Article  Google Scholar 

  • Ferreira CEL, Peret AC, Coutinho R (1998) Seasonal grazing rates and food processing by tropical herbivorous fishes. J Fish Biol 53(Suppl. A):222–235

    Google Scholar 

  • Ferreira CEL, Gonçalves JEA, Coutinho R (2001) Fish community structure and habitat complexity in a tropical rocky shore. Environ Biol Fish 61:353–369

    Article  Google Scholar 

  • Floeter SR, Krohling W, Gasparini JL, Ferreira CEL, Zalmon IL (2007) Reef fish community structure on coastal island of south-eastern Brazil: the influence of exposure and benthic cover. Environ Biol Fish 78:147–160

    Article  Google Scholar 

  • Francini-Filho RB, Moura RL, Sazima I (2000) Cleaning by the wrasse Thalassoma noronhanum, with two records of predation by its grouper client Cephalopholis fulva. J Fish Biol 56:802–809

    Google Scholar 

  • Francini-Filho RB, Ferreria CM, Coni E, Moura RL, Kaufman L (2010) Foraging activity of roving herbivorous reef fish (Acanthuridae and Scaridae) in eastern Brazil: influence of resource availability and interference competition. J Mar Biol Assoc UK 90:481–492

    Article  Google Scholar 

  • Froese R, Pauly D (eds) (2010). World wide web electronic publication. http://www.fishbase.org (Accessed 23 September 2010)

  • Fulton CJ, Bellwood DR (2004) Wave exposure, swimming performance, and the structure of tropical and temperate reef fish assemblages. Mar Biol 144:429–437. doi:10.1007/S00227-003-1216-3

    Article  Google Scholar 

  • Fulton CJ, Bellwood DR (2005) Wave-induced water motion and the functional implications for coral reef fish assemblages. Limnol Oceanogr 50:255–264

    Article  Google Scholar 

  • Fulton CJ, Belwood DR (2002) Patterns of foraging in Labrid Fishes. Mar Ecol-Prog Ser 226:135–142

    Article  Google Scholar 

  • Fulton CJ, Bellwood DR, Wainwright PC (2001) The relationship between swimming ability and habitat use in wrasses (Labridae). Mar Biol 139:25–33

    Article  Google Scholar 

  • Fulton CJ, Bellwood DR, Wainwright PC (2005) Wave energy and swimming performance shape coral reef fish assemblages. P R Soc Lond B 272:827–832

    Article  CAS  Google Scholar 

  • Gillanders BM (1995) Feeding ecology of the temperate marine fish Achoerodus viridis (Labridae): size, seasonal and site-specific differences. Mar Freshw Res 46:1009–1020. doi:10.1071/MF9951009

    Article  Google Scholar 

  • Gillanders BM, Kingsford MJ (1998) Influence of habitat on abundance and size structure of a large temperate-reef fish, Achoerodusviridis (Pisces: Labridae). Mar Biol 132:503–514. doi:10.1007/S002270050416

    Article  Google Scholar 

  • Gladfelter WB, Gladfelter EH (1978) Fish community structure as a function of habitat structure on West Indian patch reefs. Rev Biol Trop 26:65–84

    Google Scholar 

  • Guimaraens MA, Coutinho R (1996) Spatial and temporal variation of benthic marine algae at Cabo Frio upwelling region, Rio de Janeiro, Brazil. Aquat Bot 52:283–299

    Article  Google Scholar 

  • Hixon MA, Beets JP (1993) Predation, prey refuges and the structure of coral reef fish assemblages. Ecol Monogr 63:77–101

    Article  Google Scholar 

  • Hobson ES (1974) Feeding patterns among tropical fishes. Am Sci 63:382–392

    Google Scholar 

  • Humann P, Deloach N (2002) Reef fish identification, 3rd edn. New World Publication, FL

    Google Scholar 

  • Johansen JL, Fulton CJ, Bellwood DR (2007a) Avoiding the flow: refuges expand the swimming potential of coral reef fishes. Coral Reefs 26:577–583

    Article  Google Scholar 

  • Johansen JL, Fulton CJ, Bellwood DR (2007b) Estimating the sustained swimming ability of coral reef fishes. Mar Freshw Res 58:233–239

    Article  Google Scholar 

  • Johansen JL, Bellwood DR, Fulton CJ (2008) Coral reef fishes exploit flow refuges in high-flow habitats. Mar Ecol-Prog Ser 360:219–226

    Article  Google Scholar 

  • Jokiel PL, Morrissey JI (1993) Water motion on coral reefs: evaluation of the ‘clod card’ technique. Mar Ecol-Prog Ser 93:175–181

    Article  Google Scholar 

  • Jones GP (1984) Population ecology of the temperate reef fish Pseudolabrus celidotus Bloch & Schneider (Pisces: Labridae). I. Factors influencing recruitment. J Exp Mar Biol Ecol 75:257–276. doi:10.1016/0022-0981(84)90170-9

    Article  Google Scholar 

  • Jones GP (1988) Experimental evaluation of the effect of habitat structure and competitive interactions on the juveniles of two coral reef fishes. J Exp Mar Biol Ecol 12:115–126

    Article  Google Scholar 

  • Jones KMM (2002) Behavioural overlap in six Caribbean labrid species: intra- and interspecific similarities. Environ Biol Fish 65:71–81

    Article  Google Scholar 

  • Jones KMM (2005) Home range areas and activity centres in six species of Caribbean wrasses (Family Labridae). J Fish Biol 66:150–166

    Article  Google Scholar 

  • Jones KMM (2006) Distribution of behaviours and species interactions within home range areas contours in five Caribbean reef fish species (Family Labridae). Environ Biol Fish 80(1):35–49. doi:10.1007/s10641-006-9104-6

    Article  Google Scholar 

  • Jones GP, Syms G (1998) Disturbance, habitat structure and the ecology of reef fish on coral reefs. Aust J Ecol 23:287–297

    Article  Google Scholar 

  • Krajewski JP, Floeter SR (2011) Reef fish community structure of the Fernando de Noronha Archipelago (Equatorial Western Atlantic): the influence of exposure and benthic composition. Environ Biol Fish 92:25–40

    Article  Google Scholar 

  • Krajewski JP, Bonaldo RM, Sazima C, Sazima I (2006) Foraging activity and behaviour of two goatfish species (Perciformes: Mullidae) at Fernando de Noronha Archipelago, tropical West Atlantic. Environ Biol Fish 77:1–8

    Article  Google Scholar 

  • Krajewski JP, Floeter SR, Jones G, Leite F (2010) Patterns of variation in behavior within and among reef fish species on an isolated tropical island: influence of exposure and substratum. J Mar Biol Assoc UK 91(6):1359–1368. doi:10.1017/S0025315410000111

    Google Scholar 

  • Krebs CJ (1989) Ecological methodology. Harper Collin, New York

    Google Scholar 

  • Lehner PN (1979) Handbook of ethological methods. Garland STPM Press, New York

    Google Scholar 

  • Luckhurst BE, Luckhurst K (1978) Analysis of influence of substrate variables on coral reef fish communities. Mar Biol 49:317–324

    Article  Google Scholar 

  • Lukoschek V, McCormick MI (2001) Ontogeny of diet changes in a tropical benthic carnivorous fish, Parupeneus barberinus (Mullidae): relationship between foraging behaviour, habitat use, jaw size, and prey selection. Mar Biol 128:1099–1113

    Article  Google Scholar 

  • Macarthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100(916):603–609

    Article  Google Scholar 

  • Magurran AE (1990) The adaptive significance of schooling as an antipredator defence in fish. Ann Zool Fenn 27:51–66

    Google Scholar 

  • Morton JK, Gladstone W (2011) Spatial, temporal and ontogenetic variation in the association of fishes (family Labridae) with rocky-reef habitats. Mar Freshw Res 62:870–884

    Article  Google Scholar 

  • Morton JK, Platell ME, Gladstone W (2008) Differences in feeding ecology among three co-occurring species of wrasse (Teleostei: Labridae) on rocky reefs of temperate Australia. Mar Biol 154:577–592. doi:10.1007/S00227-008-0951-X

    Article  Google Scholar 

  • Norberg RA (1977) An ecological theory on foraging time and energetics and choice of optimal food searching method. J Anim Ecol 46:511

    Article  Google Scholar 

  • Ornellas AB, Coutinho R (1998) Spatial and temporal patterns of distribution and abundance of a tropical fish assemblage in a seasonal Sargassum bed, Cabo Frio Island. Brasil. J Fish Biol 53(A):198–208

    Google Scholar 

  • Randall JE (1967) Food habits of reef fishes of the West Indies. Stud Trop Oceanogr 5:665–847

    Google Scholar 

  • Rocha LA (2004). Mitochondrial DNA and color pattern variation in three western Atlantic Halichoeres (Labridae), with the revalidation of two species. Copeia, 770–782

  • Rocha LA, Rosa RS (2001) Halichoeres brasiliensis (Bloch, 1791), a valid wrasse species (Teleostei: Labridae) from Brazil, with notes on the Caribbean species Halichoeres radiatus (Linnaeus, 1758). Aqua 4:161–166

    Google Scholar 

  • Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. P R Soc Lond B 272:573–579

    Google Scholar 

  • Rocha LA, Pinheiro TH, Gasparini JL (2010) Description of Halichoeres rubrovirens, a new species of wrasse (Labridae: Perciformes) from the Trindade and Martin Vaz Island group, southeastern Brazil, with a preliminary mtDNA molecular phylogeny of New World Halichoeres. Zootaxa 2422:22–30

    Google Scholar 

  • Sampaio CLS, Nottingham MC (2008) Guia para identificação de peixes ornamentais volume I: espécies marinhas, 1st edn. Edições IBAMA, Brasília

    Google Scholar 

  • Sazima I, Moura RL, Gasparini JL (1998) The wrasse Halichoeres cyanocephalus (Labridae) as a specialized cleaner fish. Bull Mar Sci 63:605–610

    Google Scholar 

  • Sazima C, Bonaldo RM, Krajewski JP, Sazima I (2005) The Noronha wrasse: a “jack-of-all-trades” follower. Aqua 9:97–108

    Google Scholar 

  • Schoener TW (1971) Theory of feeding strategies. Annu Ver Ecol Syst 11:369–404

    Article  Google Scholar 

  • Shepherd SA, Clarkson PS (2001) Diet, feeding behaviour, activity and predation of the temperate blue-throated wrasse, Notolabrus tetricus. Mar Freshw Res 52:311–322. doi:10.1071/MF99040

    Article  Google Scholar 

  • Souza AT, Ilarri MI, Rosa IL (2011) Habitat use, feeding and territorial behavior of a Brazilian endemic damselfish Stegastes rocasensis (Actinopterygii: Pomacentridae). Environ Biol Fish 91(2):133–144

    Article  Google Scholar 

  • Stenberg M, Persson A (2005) The effects of spatial food distribution and group size on foraging behaviour in a benthic fish. Behav Process 70:41–50

    Article  Google Scholar 

  • Syms C, Jones GP (2000) Disturbance, habitat structure and the dynamics of a coral-reef fish community. Ecology 81(10):2714–2729

    Article  Google Scholar 

  • R Development Core Team (2010) R: A language and environment for statistical 4 computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-5 07-0. http://www.R-project.org/

  • Ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289

    Article  Google Scholar 

  • Thresher RE (1979) Social behavior and ecology of two sympatric wrasses (Labridae: Halichoeres. spp.) off the coast of Florida. Mar Biol 53:161–172

    Article  Google Scholar 

  • Thums M, Bradshaw CJA, Hindell MA (2011) In situ measures of foraging success and prey encounter reveal marine habitat-dependent search strategies. Ecology 92(6):1258–1270

    Article  Google Scholar 

  • Tuya F, Wernberg T, Thomsen MS (2009) Habitat structure affect abundances of labrid fishes across temperate reefs in south-western Australia. Environ Biol Fish 86:311–319. doi:10.1007/S10641-009-9520-5

    Article  Google Scholar 

  • Wainwright PC (1988) Morphology and ecology: functional basis of feeding constraints in Caribbean labrid fishes. Ecology 69:635–645. doi:10.2307/1941012

    Article  Google Scholar 

  • Welsh JQ, Bellwood DR (2012) How far do schools of roving herbivores rove? A case study using Scarus rivulatus. Coral Reefs 31(4):991–1003. doi:10.1007/s00338-012-0922-z

    Article  Google Scholar 

  • White JW, Warner RR (2007) Behavioral and energetic costs of group membership in a coral reef fish. Oecologia 154:423–433. doi:10.1007/s00442-007-0838-4

    Article  Google Scholar 

  • Wilson SK, Belwood DR, Choat JH, Furnas MJ (2003) Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanogr Mar Biol Annu Rev 41:279–309

    Google Scholar 

  • Wolf NG (1987) Schooling tendency and foraging benefit in the ocean surgeonfish. Behav Ecol Sociobiol 21:59–63

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the contribution of Igor ‘Buda’ Ferreira on the field and Camilo Ferreira, Carlos E. L. Ferreira and José A. Reis-Filho for the enlightments relevant to this study. We thank Rodrigo Maia-Nogueira and Ericka Coni for their help with the images design. We are also extremely grateful to ICMBIO (Inst. Chico Mendes para conservação da Biodiversidade) and CNPq (Conselho Nacional de Desenvimento Científico e Tecnológico) for their financial support (to J.A.C.C.N: MSc Grant No 133749/2010-0 and F.B: PQ-CNPQ No 302642/2008-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José de Anchieta C. C. Nunes.

Additional information

Communicated by D. Goulet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 414 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunes, J.A.C.C., Sampaio, C.L.S. & Barros, F. How wave exposure, group size and habitat complexity influence foraging and population densities in fishes of the genus Halichoeres (Perciformes: Labridae) on tropical rocky shores. Mar Biol 160, 2383–2394 (2013). https://doi.org/10.1007/s00227-013-2233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2233-5

Keywords

Navigation