Skip to main content
Log in

Short-term variability and control of phytoplankton photosynthetic activity in a macrotidal ecosystem (the Strait of Dover, eastern English Channel)

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Short-term changes in phytoplankton photosynthetic activity were studied during different periods of the years 2009 and 2010 in the coastal waters of a macrotidal ecosystem (the Strait of Dover, eastern English Channel). During each sampling period, samples were taken every 1.45 h., from sunrise to sunset, during at least 5 days distributed along a complete spring–neap tide cycle. The photosynthetic parameters were obtained by measuring rapid light curves using pulse amplitude modulated fluorometry and were related to environmental conditions and phytoplankton taxonomic composition. The maximum quantum yield (F v/F m) showed clear light-dependent changes and could vary from physiological maxima (0.68–0.60) to values close to 0.30 during the course of 1 day, suggesting the operation of photoprotective mechanisms. The maximum electron transport rate (ETRm) and maximal light utilization efficiency (α) were generally positively correlated and showed large diel variability. These parameters fluctuated significantly from hour to hour within each day and the intraday pattern of variation changed significantly among days of each sampling period. Stepwise multiple linear regressions analyses indicated that light fluctuations explained a part of this variability but a great part of variability stayed unexplained. F v/F m, ETRm and α were not only dependent on the light conditions of the sampling day but also on those of the previous days. A time lag of 3 days in the effect of light on ETRm and α variation was highlighted. At these time scales, changes in phytoplankton community structure seemed to have a low importance in the variability in photosynthetic parameters. The photoacclimation index E k showed a lower variability and was generally different from the incident irradiance, indicating a limited acclimation capacity with a poor optimization of light harvesting during the day. However, in well-mixed systems such as the Strait of Dover, the short-term photoacclimation is disrupted by the high level of variability in environmental conditions. Also, the variability observed in the present study can be associated with a particular kind of photosynthetic response: the “E k-independent” variability. The physiological basis of this photosynthetic response is largely unresolved and further researches on this subject are still required to better explain the dynamics of phytoplankton activity in the Strait of Dover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aminot A, Kérouel R (2004) Hydrologie des écosystèmes marins. Paramètres et analyses. Editions de l’Ifremer, Brest, p 335

    Google Scholar 

  • Aminot A, Kérouel R (2007) Dosage automatique des nutriments dans les eaux marines, vol 1. Editions de l’Ifremer, pp 188

  • Anning T, MacIntyre HL, Pratt SM, Sammes PJ, Gibb S, Geider RJ (2000) Photoacclimation in the marine diatom Skeletonema costatum. Limnol Oceanogr Methods 45:1807–1817. doi:10.4319/lo.2000.45.8.1807

    Article  Google Scholar 

  • Azevedo IC, Duarte P, Bordalo AA (2010) Temporal and spatial variability of phytoplankton photosynthetic characteristics in a southern European estuary (Douro, Portugal). Mar Ecol Prog Ser 412:29–44. doi:10.3354/meps08669

    Article  CAS  Google Scholar 

  • Behrenfeld MJ, Halsey KH, Milligan AJ (2008) Evolved physiological responses of phytoplankton to their integrated growth environment. Philos Trans R Soc B 363:2687–2703. doi:10.1098/rstb.2008.0019

    Article  CAS  Google Scholar 

  • Behrenfeld MJ, Prasil O, Babin M, Bruyant F (2004) In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis. J Phycol 40(1):4–25. doi:10.1046/j.1529-8817.2004.03083.x

    Article  CAS  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632. doi:10.1890/07-0986.1

    Article  Google Scholar 

  • Breton E, Brunet C, Sautour B, Brylinski JM (2000) Annual variations of phytoplankton biomass in the eastern English Channel: comparison by pigment signatures and microscopic counts. J Plankton Res 22(8):1423–1440. doi:10.1093/plankt/22.8.1423

    Article  CAS  Google Scholar 

  • Brunet C, Brylinski JM, Frontier S (1992) Productivity, photosynthetic pigments and hydrology in the coastal front of the eastern English Channel. J Plankton Res 14:1541–1552. doi:10.1093/plankt/14.11.1541

    Article  CAS  Google Scholar 

  • Brunet C, Brylinski JM, Lemoine Y (1993) In situ variations of the xanthophylls diatoxanthin and diadinoxanthin: photoadaptation and relationships with a hydrodynamical system in the eastern English Channel. Mar Ecol Prog Ser 102:69–77. doi:10.3354/meps102069

    Article  CAS  Google Scholar 

  • Brunet C, Casotti R, Vantrepotte V (2008) Phytoplankton diel and vertical variability in photobiological responses at a coastal station in the Mediterranean Sea. J Plankton Res 30(6):645–654. doi:10.1093/plankt/fbn028

    Article  CAS  Google Scholar 

  • Brylinski JM, Lagadeuc Y, Gentilhomme V, Dupont JP, Lafite R, Dupeuple PA, Huault MF, Auger Y, Puskaric E, Wartel M, Cabioch L (1991) Le “fleuve côtier”: un phénomène hydrologique important en Manche orientale. Exemple du Pas-de-Calais. Oceanol Acta 11:197–203

    Google Scholar 

  • Brzezinski MA (1985) The Si:C:N ratio of marine Diatoms: interspecific variability and the effect of some environmental variables. J Phycol 21:347–357. doi:10.1111/j.0022-3646.1985.00347.x

    Article  CAS  Google Scholar 

  • Buma AGJ, Noordeloos AAM, Larsen J (1993) Strategies and kinetics of photoacclimation on three Antarctic nanophytoflagellates. J Phycol 29(4):407–417. doi:10.1111/j.1529-8817.1993.tb00141.x

    Article  Google Scholar 

  • Claquin P, Ni Longphuirt S, Fouillaron P, Huonnic P, Ragueneau O, Klein C, Leynaert A (2010) Effects of simulated benthic fluxes on phytoplankton dynamic and photosynthetic parameters in a mesocosm experiment (Bay of Brest, France). Estuar Coast Shelf Sci 86:93–101. doi:10.1016/j.ecss.2009.10.017

    Article  CAS  Google Scholar 

  • Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Natural Environment Research Council, UK, p 144

    Google Scholar 

  • Claustre H, Kerhervé P, Marty JC, Prieur L (1994) Phytoplankton photoadaptation related to some frontal physical processes. J Mar Syst 5:251–265. doi:10.1016/0924-7963(94)90050-7

    Article  Google Scholar 

  • Cruz S, Serôdio J (2008) Relationship of rapid light curves of variable fluorescence to photoacclimation and non-photochemical quenching in a benthic diatom. Aquat Bot 88(3):256–264. doi:10.1016/j.aquabot.2007.11.001

    Article  CAS  Google Scholar 

  • Cullen JJ, Lewis MR (1988) The kinetics of algal photoadaptation in the context of vertical mixing. J Plankton Res 10:1039–1063. doi:10.1093/plankt/10.5.1039

    Article  Google Scholar 

  • Dimier C, Giovanni S, Ferdinando T, Brunet C (2009) Comparative ecophysiology of the xanthophyll cycle in six marine phytoplanktonic species. Protist 160(3):397–411. doi:10.1016/j.protis.2009.03.001

    Article  CAS  Google Scholar 

  • Dubinsky Z, Schofield O (2010) From the light to the darkness: thriving at the light extremes in the oceans. Hydrobiologia 639:153–171. doi:10.1007/s10750-009-0026-0

    Article  CAS  Google Scholar 

  • Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42(3–4):199–215. doi:10.1016/0304-3800(88)90057-9

    Article  Google Scholar 

  • Erga SR, Skjoldal HR (1990) Diel variations in photosynthetic activity of summer phytoplankton in Lindaspollene, western Norway. Mar Ecol Prog Ser 65:73–85

    Article  CAS  Google Scholar 

  • Falkowski PG, Kolber Z (1993) Estimation of phytoplankton photosynthesis by active fluorescence. ICES Mar Sci Symp 197:92–103

    Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi:10.1016/S0304-4165(89)80016-9

    Article  CAS  Google Scholar 

  • Gilbert M, Domin A, Becker A, Wilhelm C (2000) Estimation of primary productivity by chlorophyll a in vivo fluorescence in freshwater phytoplankton. Photosynthetica 38(1):111–126. doi:10.1023/A:1026708327185

    Article  CAS  Google Scholar 

  • Grattepanche JD, Breton E, Brylinski JM, Lecuyer E, Christaki U (2011) Succession of primary producers and micrograzers in a coastal ecosystem dominated by Phaeocystis globosa blooms. J Plankton Res 33:37–50. doi:10.1093/plankt/fbq097

    Article  CAS  Google Scholar 

  • Harding LW Jr, Fisher TR Jr, Tyler MA (1987) Adaptive responses of photosynthesis in phytoplankton: specificity to time-scale of change in light. Biol Oceanogr 4:403–437

    Google Scholar 

  • Harris GN, Scanlan DJ, Geider RJ (2005) Acclimation of Emiliania huxleyi (Prymnesiophyceae) to photon flux density. J Phycol 41:851–862. doi:10.1111/j.1529-8817.2005.00109.x

    Article  Google Scholar 

  • Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29(6):729–738. doi:10.1111/j.0022-3646.1993.00729.x

    Article  Google Scholar 

  • Houliez E, Lizon F, Thyssen M, Artigas LF, Schmitt FG (2012) Spectral fluorometric characterization of Haptophyte dynamics using the FluoroProbe: an application in the eastern English Channel for monitoring Phaeocystis globosa. J Plankton Res 34(2):136–151. doi:10.1093/plankt/fbr091

    Article  Google Scholar 

  • Jones RI (1978) Adaptations to fluctuating irradiance by natural phytoplankton communities. Limnol Oceanogr 23:920–926

    Article  Google Scholar 

  • Jouenne F, Lefebvre S, Véron B, Lagadeuc Y (2005) Biological and physicochemical factors controlling short-term variability in phytoplankton primary production and photosynthetic parameters in a macrotidal ecosystem (eastern English Channel). Estuar Coast Shelf Sci 65(3):421–439. doi:10.1016/j.ecss.2005.05.023

    Article  CAS  Google Scholar 

  • Juneau P, Harrison PJ (2005) Comparison by PAM fluorimetry of photosynthetic activity of nine marine phytoplankton grown under identical conditions. Photochem Photobiol 81:649–653. doi:10.1562/2005-01-13-RA-414.1

    Article  CAS  Google Scholar 

  • Kolbowski J, Schreiber U (1995) Computer-controlled phytoplankton analyser based on a 4-wavelengths PAM chlorophyll fluorometer. In: Mathis P (ed) Photosynthesis: from light to biosphere (V). Kluwer Academic Publishers, Dordrecht, pp 825–828

    Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Kromkamp J, Forster R (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol 38:103–112. doi:10.1080/0967026031000094094

    Article  Google Scholar 

  • Kropuenske LR, Mills MM, Van Dijken GL, Alderkamp AC, Mine Berg G, Robinson DH, Welschmeyer NA, Arrigo KR (2010) Strategies and rates of photoacclimation in two major southern ocean phytoplankton taxa: Phaeocystis Antarctica (Haptophyta) and Fragilariopsis cylindrus (Bacillariophyceae). J Phycol 46(6):1138–1151. doi:10.1111/j.1529-8817.2010.00922.x

    Article  Google Scholar 

  • Kulk G, Van De Poll WH, Visser RJW, Buma AGJ (2011) Distinct differences in photoacclimation potential between prokaryotic and eukaryotic oceanic phytoplankton. J Exp Mar Biol Ecol 398:63–72. doi:10.1016/j.jembe.2010.12.011

    Article  Google Scholar 

  • Lavaud J (2007) Fast regulation of photosynthesis in Diatoms: mechanisms, evolution and ecophysiology. Funct Plant Sci Biotech 1:267–287

    Google Scholar 

  • Lavaud J, Rousseau B, Etienne AL (2003) Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms. Biochemistry (Mosc) 42(19):5802–5808. doi:10.1021/bi027112i

    Article  CAS  Google Scholar 

  • Lavaud J, Rousseau B, Van Gorkom HJ, Etienne AL (2002) Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol 129(3):1398–1406. doi:10.1104/pp.002014

    Article  CAS  Google Scholar 

  • Lavaud J, Strzepek RF, Kroth PG (2007) Photoprotection capacity differs among diatoms: possible consequences on the spatial distribution of diatoms related to fluctuations in the underwater light climate. Limnol Oceanogr Methods 52(3):1188–1194. doi:10.4319/lo.2007.52.3.1188

    Article  CAS  Google Scholar 

  • Lefebvre A, Guiselin N, Barbet F, Artigas LF (2011a) Long-term hydrological and phytoplankton monitoring (1992–2007) of three potentially eutrophic systems in the eastern English Channel and the Southern Bight of the North Sea. ICES J Mar Sci 68:2029–2043. doi:10.1093/icesjms/fsr149

    Article  Google Scholar 

  • Lefebvre S, Mouget JL, Lavaud J (2011b) Duration of rapid light curves for determining the photosynthetic activity of microphytobenthos biofilm in situ. Aquat Bot 95:1–8. doi:10.1016/j.aquabot.2011.02.010

    Article  CAS  Google Scholar 

  • Lewis MR, Horne EPW, Cullen JJ, Oakey NS, Platt T (1984) Turbulent motions may control phytoplankton photosynthesis in the upper ocean. Nature 311:49–50. doi:10.1038/311049a0

    Article  CAS  Google Scholar 

  • Lizon F, Lagadeuc Y, Brunet C, Aelbrecht D, Bentley D (1995) Primary production and photoadaptation of phytoplankton in relation with tidal mixing in coastal waters. J Plankton Res 17:1039–1055. doi:10.1093/plankt/17.5.1039

    Article  Google Scholar 

  • Lizon F, Seuront L, Lagadeuc Y (1998) Photoadaptation and primary production study in tidally mixed coastal waters using a Lagrangian model. Mar Ecol Prog Ser 169:43–54. doi:10.3354/meps169043

    Article  Google Scholar 

  • Lohrenz S, Fahnenstiel GL, Redalje DG (1994) Spatial and temporal variations of photosynthetic parameters in relation to environmental conditions in coastal waters of the northern Gulf of Mexico. Estuaries 17:779–795. doi:10.2307/1352747

    Article  CAS  Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662. doi:10.1146/annurev.pp.45.060194.003221

    Article  CAS  Google Scholar 

  • Lorenzen CJ (1966) A method for continuous measurement of in vivo chlorophyll concentration. Deep-Sea Res (1 Oceanogr Res Pap) 13:223–247. doi:10.1016/0011-7471(66)91102-8

  • MacCaull WA, Platt T (1977) Diel variations in the photosynthetic parameters of coastal phytoplankton. Limnol Oceanogr 22:723–731

    Article  Google Scholar 

  • MacIntyre HL, Cullen JJ (1996) Primary production by suspended and benthic microalgae in a turbid estuary: time-scales of variability in San Antonio Bay, Texas. Mar Ecol Prog Ser 145:245–268. doi:10.3354/meps145245

    Article  Google Scholar 

  • MacIntyre HL, Kana TM, Geider RJ (2000) The effect of water motion on short-term rates of photosynthesis by marine phytoplankton. Trends Plant Sci 5(1):12–17. doi:10.1016/S1360-1385(99)01504-6

    Article  CAS  Google Scholar 

  • Madariaga I (1995) Photosynthetic characteristics of phytoplankton during the development of a summer bloom in the Urdaibai Estuary, Bay of Biscay. Estuar Coast Shelf Sci 40:559–575. doi:10.1006/ecss.1995.0038

    Article  Google Scholar 

  • Marra J (1978) Phytoplankton photosynthetic response to vertical movement in a mixed layer. Mar Bio 46:203–208. doi:10.1007/BF00390681

    Article  CAS  Google Scholar 

  • Meyer AA, Tackx M, Daro N (2000) Xanthophyll cycling in Phaeocystis globosa and Thalassiosira sp.: a possible mechanism for species succession. J Sea Res 43(3–4):373–384. doi:10.1016/S1385-1101(00)00031-9

    Article  CAS  Google Scholar 

  • Mills MM, Kropuenske LR, Van Dijken GL, Alderkamp AC, Berg GM, Robinson DH, Welschmeyer NA, Arrigo KR (2010) Photophysiology in two southern ocean phytoplankton taxa: photosynthesis of Phaeocystis Antarctica (prymnesiophyceae) and Fragilariopsis Cylindrus (bacillariophyceae) under simulated mixed-layer irradiance. J Phycol 46:1114–1127. doi:10.1111/j.1529-8817.2010.00923.x

    Article  CAS  Google Scholar 

  • Mitchell B (1990) Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT). Ocean Opt X:137–148. doi:10.1117/12.21440

  • Mitchell BG, Kahru M, Wieland J, Stramska M (2003) Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. In: Mueller JL, Fargion GS, McClain CR (eds) Ocean optics protocols for satellite ocean color sensor validation. Revision 4-volume IV, NASA Technical Memorandum 2003–211621, pp 39–64

  • Müller P, Li XP, Niyogi K (2001) Non-photochemical quenching. a response to excess light energy. Plant Physiol 125:1558–1566. doi:10.1104/pp.125.4.1558

    Article  Google Scholar 

  • Neale PJ, Richerson PJ (1987) Photoinhibition and the diurnal variation of phytoplankton photosynthesis-I. Development of a photosynthesis-irradiance model from studies of in situ responses. J Plankton Res 9:167–193. doi:10.1093/plankt/9.1.167

    Article  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313. doi:10.1093/comjnl/7.4.308

    Article  Google Scholar 

  • Perkins RG, Mouget JL, Lefebvre S, Lavaud J (2006) Light response curve methodology and possible implications in the application of chlorophyll fluorescence to benthic diatoms. Mar Biol 149:703–712. doi:10.1007/s00227-005-0222-z

    Article  Google Scholar 

  • Platt T, Jassby AD (1976) The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. J Phycol 12:421–430. doi:10.1111/j.1529-8817.1976.tb02866.x

    Google Scholar 

  • Putt M, Prézelin BB (1985) Observations of diel patterns of photosynthesis in cyanobacteria and nanoplankton in the Santa Barbara channel during “El Niño”. J Plankton Res 7:779–790. doi:10.1093/plankt/7.6.779

    Article  Google Scholar 

  • Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237. doi:10.1016/j.aquabot.2005.02.006

    Article  CAS  Google Scholar 

  • Ralph PJ, Polk SM, Moore KA, Orth RJ, Smith WO Jr (2002) Operation of the xanthophyll cycle in the seagrass Zostera marina in response to variable irradiance. J Exp Mar Biol Ecol 271:189–207. doi:10.1016/S0022-0981(02)00047-3

    Article  CAS  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivations in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone memorial volume. University Press of Liverpool, Liverpool, pp 177–192

    Google Scholar 

  • Richardson K, Beardall J, Raven JA (1983) Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol 93(2):157–191. doi:10.1111/j.1469-8137.1983.tb03422.x

    Article  Google Scholar 

  • Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kiefer DA, Legendre L, Morel A, Parslow J, Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J Plankton Res 19(11):1637–1670. doi:10.1093/plankt/19.11.1637

    Article  CAS  Google Scholar 

  • Sall J, Creighton L, Lehman A (2007) JMP start statistics: a guide to statistics and data analysis using JMP, 4th edn. SAS Institute Inc., Cary, NC, p 607

    Google Scholar 

  • Savidge G (1988) Influence of inter- and intra-daily light-field variability on photosynthesis by coastal phytoplankton. Mar Biol 100:127–133. doi:10.1007/BF00392962

    Article  Google Scholar 

  • Schapira M, Vincent D, Gentilhomme V, Seuront L (2008) Temporal patterns of phytoplankton assemblages, size spectra and diversity during the wane of a Phaeocystis globosa spring bloom in hydrologically contrasted coastal waters. J Mar Biol Assoc UK 88(4):649–662. doi:10.1017/S0025315408001306

    Article  CAS  Google Scholar 

  • Scherrer B (2007) Biostatistique, vol 1, 2e édn. Gaëtan Morin éditeur. 816 pp

  • Schofield O, Evens TJ, Millie DF (1998) Photosystem II quantum yields and xanthophyll-cycle pigments of the macroalga Sargassum natans (Phaeophyceae): responses under natural sunlight. J Phycol 34:104–112. doi:10.1046/j.1529-8817.1998.340104.x

    Article  CAS  Google Scholar 

  • Schreiber U (1998) Chlorophyll fluorescence: new instruments for special applications. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol 5. Kluwer Academic Publishers, Dordrecht, pp 4253–4258

  • Schubert H, Sagert S, Forster RM (2001) Evaluation of the different levels of variability in the underwater light field of a shallow estuary. Helgol Mar Res 55:12–22. doi:10.1007/s101520000064

    Article  Google Scholar 

  • Serôdio J, Vieira S, Cruz S (2008) Photosynthetic activity, photoprotection and photoinhibition in intertidal microphytobenthos as studied in situ using variable chlorophyll fluorescence. Cont Shelf Res 28:1363–1375. doi:10.1016/j.csr.2008.03.019

    Article  Google Scholar 

  • Seuront L, Vincent D, Mitchell JG (2006) Biologically induced modification of seawater viscosity in the eastern English Channel during a Phaeocystis globosa spring bloom. J Mar Syst 61:118–133. doi:10.1016/j.jmarsys.2005.04.010

    Article  Google Scholar 

  • Shaw PJ, Purdie DA (2001) Phytoplankton photosynthesis-irradiance parameters in the near-shore UK coastal waters of the North Sea: temporal variation and environmental control. Mar Ecol Prog Ser 216:83–94. doi:10.3354/meps216083

    Article  CAS  Google Scholar 

  • Six C, Finkel ZV, Rodriguez F, Marie D, Partensky F, Campbell DA (2008) Contrasting photoacclimation costs in ecotypes of the marine eukaryotic picoplankter Ostreococcus. Limnol Oceanogr Methods 53:255–265. doi:10.4319/lo.2008.53.1.0255

    Article  CAS  Google Scholar 

  • Staehr PA, Henriksen P, Markager S (2002) Photoacclimation of four marine phytoplankton species to irradiance and nutrient availability. Mar Ecol Prog Ser 238:47–59. doi:10.3354/meps238047

    Article  CAS  Google Scholar 

  • Strzepek RF, Harrison PJ (2004) Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431:689–692. doi:10.1038/nature02954

    Article  CAS  Google Scholar 

  • Suggett DJ, Le Floc’H E, Harris GN, Leonardos N, Geider RJ (2007) Different strategies of photoacclimation by two strains of Emiliania huxleyi (Haptophyta). J Phycol 43:1209–1222. doi:10.1111/j.1529-8817.2007.00406.x

    Article  CAS  Google Scholar 

  • Tillmann U, Hesse KJ, Colijn F (2000) Planktonic primary production in the German Wadden sea. J Plankton Res 22(7):1253–1276. doi:10.1093/plankt/22.7.1253

    Article  CAS  Google Scholar 

  • Van De Poll WH, Van Leeuwe MA, Roggeveld J, Buma AGJ (2005) Nutrient limitation and high irradiance acclimation reduce par and UV-induced viability loss in the antarctic diatom Chaetoceros brevis (Bacillariophyceae). J Phycol 41:840–850. doi:10.4319/lo.2007.52.4.1430

    Article  Google Scholar 

  • Van De Poll WH, Visser RJW, Buma AGJ (2007) Acclimation to a dynamic irradiance regime changes excessive irradiance sensitivity of Emiliania huxleyi and Thalassiosira weissflogii. Limnol Oceanogr Methods 52:1430–1438. doi:10.4319/lo.2007.52.4.1430

    Article  Google Scholar 

  • van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosyn Res 25:147–150. doi:10.1007/BF00033156

    Article  Google Scholar 

  • Van Leeuwe MA, Van Sikkelerus B, Gieskes WWC, Stefels J (2005) Taxon-specific differences in photoacclimation to fluctuating irradiance in an Antarctic diatom and a green flagellate. Mar Ecol Prog Ser 288:9–19. doi:10.3354/meps288009

    Article  Google Scholar 

  • Vaulot D, Marie D (1999) Diel variability of photosynthetic picoplankton in the equatorial Pacific. J Geophys Res Oceans 104:3297–3310. doi:10.1029/98JC01333

    Article  CAS  Google Scholar 

  • White AJ, Critchley C (1999) Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosyn Res 59:63–72. doi:10.1023/A:1006188004189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Valérie Gentilhomme for her help during laboratory measurements of nutrient concentrations, Jessica Chicheportiche for chlorophyll a analyses and Xavier Mériaux for his help during the analyses of chl a-specific absorption coefficients. Finally, we thank three anonymous reviewers for their helpful comments which improved the manuscript. This study forms part of the PhD thesis of E.H. financially supported by a grant from the French “Ministère de l’Enseignement Supérieur et de la Recherche” and the DYMAPHY INTERREG IVA “2 Mers Seas Zeeën” project co-funded by the European Union (ERDF funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie Houliez.

Additional information

Communicated by R. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houliez, E., Lizon, F., Lefebvre, S. et al. Short-term variability and control of phytoplankton photosynthetic activity in a macrotidal ecosystem (the Strait of Dover, eastern English Channel). Mar Biol 160, 1661–1679 (2013). https://doi.org/10.1007/s00227-013-2218-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2218-4

Keywords

Navigation