Skip to main content

Advertisement

Log in

Effects of in situ CO2 enrichment on the structural and chemical characteristics of the seagrass Thalassia testudinum

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Seagrasses commonly display carbon-limited photosynthetic rates. Thus, increases in atmospheric pCO2, and consequentially oceanic CO2(aq) concentrations, may prove beneficial. While addressed in mesocosms, these hypotheses have not been tested in the field with manipulative experimentation. This study examines the effects of in situ CO2(aq) enrichment on the structural and chemical characteristics of the tropical seagrass, Thalassia testudinum. CO2(aq) availability was manipulated for 6 months in clear, open-top chambers within a shallow seagrass meadow in the Florida Keys (USA), reproducing forecasts for the year 2100. Structural characteristics (leaf area, leaf growth, shoot mass, and shoot density) were unresponsive to CO2(aq) enrichment. However, leaf nitrogen and phosphorus content declined on average by 11 and 21 %, respectively. Belowground, non-structural carbohydrates increased by 29 %. These results indicate that increased CO2(aq) availability may primarily alter the chemical composition of seagrasses, influencing both the nutrient status and resilience of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytol 165(2):351–371

    Article  Google Scholar 

  • Alexandre A, Silva J, Buapet P, Bjork M, Santos R (2012) Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii. Ecol Evol 2(10):2625–2635

    Article  Google Scholar 

  • Arnold T, Mealey C, Leahey H, Miller AW, Hall-Spencer J, Milazzo M, Maers K (2012) Ocean acidification and the loss of phenolic substances in marine plants. Plos One 7(4):e35107

    Google Scholar 

  • Arp WJ (1991) Effects of source sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ 14(8):869–875

    Article  CAS  Google Scholar 

  • Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol Syst 21:167–196

    Article  Google Scholar 

  • Beer S, Koch E (1996) Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments. Mar Ecol Prog Ser 141(1–3):199–204

    Article  Google Scholar 

  • Bezemer TM, Jones TH (1998) Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82(2):212–222

    Article  Google Scholar 

  • Boyer JN, Fourqurean JW, Jones RD (1999) Seasonal and long-term trends in the water quality of Florida Bay (1989–1997). Estuaries 22(2B):417–430

    Article  CAS  Google Scholar 

  • Brewer PG (1997) Ocean chemistry of the fossil fuel CO2 signal: the haline signal of “business as usual’”. Geophys Res Lett 24(11):1367–1369

    Article  CAS  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425(6956):365

    Article  CAS  Google Scholar 

  • Campbell JE, Fourqurean JW (2011) Novel methodology for in situ carbon dioxide enrichment of benthic ecosystems. Limnol Oceanogr Methods 9:97–109

    Article  CAS  Google Scholar 

  • Chapin FS, Schulze ED, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447

    Article  Google Scholar 

  • Cotrufo MF, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob Chang Biol 4(1):43–54

    Article  Google Scholar 

  • Dawes CJ, Lawrence JM (1979) Effects of blade removal on the proximate composition of the rhizome of the seagrass Thalassia testudinum banks ex König. Aquat Bot 7(3):255–266

    Article  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 34(10):1733–1743

    Article  CAS  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Duarte CM, Chiscano CL (1999) Seagrass biomass and production: a reassessment. Aquat Bot 65(1–4):159–174

    Article  Google Scholar 

  • Durako MJ (1993) Photosynthetic utilization of CO2(Aq) and HCO3 in Thalassia testudinum (Hydrocharitaceae). Mar Biol 115(3):373–380

    Article  Google Scholar 

  • Fourqurean JW, Zieman JC (2002) Nutrient content of the seagrass Thalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys USA. Biogeochemistry 61(3):229–245

    Article  CAS  Google Scholar 

  • Fourqurean JW, Zieman JC, Powell GVN (1992) Phosphorus limitation of primary production in Florida Bay—evidence from C–N–P ratios of the dominant seagrass Thalassia testudinum. Limnol Oceanogr 37(1):162–171

    Article  CAS  Google Scholar 

  • Fourqurean JW, Willsie A, Rose CD, Rutten LM (2001) Spatial and temporal pattern in seagrass community composition and productivity in south Florida. Mar Biol 138(2):341–354

    Article  Google Scholar 

  • Fourqurean JW, Escorcia SP, Anderson WT, Zieman JC (2005) Spatial and seasonal variability in elemental content, δ13C, and δ15N of Thalassia testudinum from South Florida and its implications for ecosystem studies. Estuaries 28(3):447–461

    Article  CAS  Google Scholar 

  • Fourqurean JW, Marba N, Duarte CM, Diaz-Almela E, Ruiz-Halpern S (2007) Spatial and temporal variation in the elemental and stable isotopic content of the seagrasses Posidonia oceanica and Cymodocea nodosa from the Illes Balears, Spain. Mar Biol 151(1):219–232

    Article  Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H, Marba N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509

    Article  CAS  Google Scholar 

  • Gifford RM, Barrett DJ, Lutze JL (2000) The effects of elevated CO2 on the C:N and C:P mass ratios of plant tissues. Plant Soil 224(1):1–14

    Article  CAS  Google Scholar 

  • Grice AM, Loneragan NR, Dennison WC (1996) Light intensity and the interactions between physiology, morphology and stable isotope ratios in five species of seagrass. J Exp Mar Biol Ecol 195(1):91–110

    Article  CAS  Google Scholar 

  • Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454(7200):96–99

    Article  CAS  Google Scholar 

  • Heck KL, Carruthers TJB, Duarte CM, Hughes AR, Kendrick G, Orth RJ, Williams SW (2008) Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems 11(7):1198–1210

    Article  Google Scholar 

  • Hendriks IE, Duarte CM, Alvarez M (2010) Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuar Coast Shelf Sci 86(2):157–164

    Article  CAS  Google Scholar 

  • Invers O, Zimmerman RC, Alberte RS, Perez M, Romero J (2001) Inorganic carbon sources for seagrass photosynthesis: an experimental evaluation of bicarbonate use in species inhabiting temperate waters. J Exp Mar Biol Ecol 265(2):203–217

    Article  CAS  Google Scholar 

  • Invers O, Tomas F, Perez M, Romero J (2002) Potential effect of increased global CO2 availability on the depth distribution of the seagrass Posidonia oceanica (L.) Delile: a tentative assessment using a carbon balance model. Bull Mar Sci 71(3):1191–1198

    Google Scholar 

  • Jiang ZJ, Huang XP, Zhang JP (2010) Effects of CO2 enrichment on photosynthesis, growth, and biochemical composition of seagrass Thalassia hemprichii (Ehrenb.) Aschers. J Integr Plant Biol 52(10):904–913

    Article  CAS  Google Scholar 

  • Johnson KM, Burney CM, Sieburth JM (1981) Doubling the production and precision of the MBTH spectrophotometric assay for dissolved carbohydrates in seawater. Mar Chem 10(6):467–473

    Article  CAS  Google Scholar 

  • Johnson VR, Russell BD, Fabricius KE, Brownlee C, Hall-Spencer JM (2012) Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Glob Chang Biol 18(9):2792–2803

    Article  Google Scholar 

  • Kaldy JE, Dunton KH (2000) Above- and below-ground production, biomass and reproductive ecology of Thalassia testudinum (turtle grass) in a subtropical coastal lagoon. Mar Ecol Prog Ser 193:271–283

    Article  CAS  Google Scholar 

  • Kim SH, Kim YK, Park SR, Li WT, Lee KS (2012) Growth dynamics of the seagrass Halophila nipponica, recently discovered in temperate coastal waters of the Korean peninsula. Mar Biol 159(2):255–267

    Article  Google Scholar 

  • Kline DI, Teneva L, Schneider K, Miard T, Chai A, Marker M, Headley K, Opdyke B, Nash M, Valetich M, Caves JK, Russell BD, Connell SD, Kirkwood BJ, Brewer P, Peltzer E, Silverman J, Caldeira K, Dunbar RB, Koseff JR, Monismith SG, Mitchell BG, Dove S, Hoegh-Guldberg O (2012) A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Sci Rep 2:413

    Google Scholar 

  • Lee KS, Dunton KH (1997) Effects of in situ light reduction on the maintenance, growth and partitioning of carbon resources in Thalassia testudinum Banks ex könig. J Exp Mar Biol Ecol 210(1):53–73

    Article  Google Scholar 

  • Lee KS, Park SR, Kim JB (2005) Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula. Mar Biol 147(5):1091–1108

    Article  Google Scholar 

  • Lee KS, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J Exp Mar Biol Ecol 350(1–2):144–175

    Article  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105. Oak Ridge National Laboratory, Oak Ridge

    Book  Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54(8):731–739

    Article  Google Scholar 

  • Martin S, Rodolfo-Metalpa R, Ransome E, Rowley S, Buia MC, Gattuso JP, Hall-Spencer J (2008) Effects of naturally acidified seawater on seagrass calcareous epibionts. Biol Lett 4(6):689–692

    Article  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18(6):897–907

    Article  CAS  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA 107(45):19368–19373

    Article  CAS  Google Scholar 

  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411(6836):469–472

    Article  CAS  Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56(12):987–996

    Article  Google Scholar 

  • Pakulski JD, Benner R (1992) An improved method for the hydrolysis and MBTH analysis of dissolved and particulate carbohydrates in seawater. Mar Chem 40(3–4):143–160

    Article  CAS  Google Scholar 

  • Palacios SL, Zimmerman RC (2007) Response of eelgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Mar Ecol Prog Ser 344:1–13

    Article  Google Scholar 

  • Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidification on macroalgal communities. J Exp Mar Biol Ecol 400(1–2):278–287

    Article  CAS  Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440(7086):922–925

    Article  CAS  Google Scholar 

  • Rose CD, Dawes CJ (1999) Effects of community structure on the seagrass Thalassia testudinum. Mar Ecol Prog Ser 184:83–95

    Article  Google Scholar 

  • Stitt M (1991) Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ 14(8):741–762

    Article  CAS  Google Scholar 

  • Stitt M, Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22(6):583–621

    Article  CAS  Google Scholar 

  • Tomasko DA, Dawes CJ, Hall MO (1996) The effects of anthropogenic nutrient enrichment on turtle grass (Thalassia testudinum) in Sarasota Bay, Florida. Estuaries 19(2):448–456

    Article  Google Scholar 

  • Wernberg T, Smale DA, Thomsen MS (2012) A decade of climate change experiments on marine organisms: procedures, patterns and problems. Glob Chang Biol 18:1491–1498

    Article  Google Scholar 

  • Zieman JC (1974) Methods for the study of the growth and production of turtle grass, Thalassia testudinum König. Aquaculture 4:139–143

    Article  Google Scholar 

  • Zimmerman RC, Kohrs DG, Steller DL, Alberte RS (1997) Impacts of CO2 enrichment on productivity and light requirements of eelgrass. Plant Physiol 115(2):599–607

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Patrick Rice and the Florida Keys Community College for logistical support. Rebecca Bernard, Jeana Drake, Pamela Parker, and Bryan Dewsbury provided assistance in the field. This work was supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research Program under Grant No. DBI-0620409, and a Graduate School Doctoral Evidence Acquisition Fellowship awarded by Florida International University. This is contribution number 603 from the Southeast Environmental Research Center at FIU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin E. Campbell.

Additional information

Communicated by K. Bischof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, J.E., Fourqurean, J.W. Effects of in situ CO2 enrichment on the structural and chemical characteristics of the seagrass Thalassia testudinum . Mar Biol 160, 1465–1475 (2013). https://doi.org/10.1007/s00227-013-2199-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2199-3

Keywords

Navigation