Skip to main content

Advertisement

Log in

Effects of feeding and light intensity on the response of the coral Porites rus to ocean acidification

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Recently, it has been suggested that there are conditions under which some coral species appear to be resistant to the effects of ocean acidification. To test if such resistance can be explained by environmental factors such as light and food availability, the present study investigated the effect of 3 feeding regimes crossed with 2 light levels on the response of the coral Porites rus to 2 levels of pCO2 at 28 °C. After 1, 2, and 3 weeks of incubation under experimental conditions, none of the factors—including pCO2—significantly affected area-normalized calcification and biomass-normalized calcification. Biomass also was unaffected during the first 2 weeks, but after 3 weeks, corals that were fed had more biomass per unit area than starved corals. These results suggest that P. rus is resistant to short-term exposure to high pCO2, regardless of food availability and light intensity. P. rus might therefore represent a model system for exploring the genetic basis of tolerance to OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adam TC, Schmitt RJ, Holbrook SJ, Brooks AJ, Edmunds PJ, Carpenter RC, Bernardi G (2011) Herbivory, connectivity, and ecosystem resilience: response of a coral reef to a large-scale perturbation. PLoS ONE 6:e23717. doi:10.1371/journal.pone.0023717

    Article  CAS  Google Scholar 

  • Adjeroud M (1997) Factors influencing spatial patterns on coral reefs around Moorea, French Polynesia. Mar Ecol Prog Ser 159:105–119. doi:10.3354/meps159105

    Article  Google Scholar 

  • Alldredge A, Carlson C of Moorea Coral Reef LTER (2011) MCR LTER: Coral reef: Water column: Nearshore water profiles, CTD, primary production, and chemistry. knb-lter-mcr.10.29 (http://metacat.lternet.edu/knb/metacat/knb-lter-mcr.10.29/lter)

  • Anthony KRN (1999) Coral suspension feeding on fine particulate matter. J Exp Mar Biol Ecol 232:85–106. doi:10.1016/S0022-0981(98)00099-9

    Article  Google Scholar 

  • Anthony KRN (2000) Enhanced particle-feeding capacity of corals on turbid reefs (Great Barrier Reef, Australia). Coral Reefs 19:59–67. doi:10.1007/s003380050227

    Article  Google Scholar 

  • Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253. doi:10.1016/S0022-0981(00)00237-9

    Article  Google Scholar 

  • Anthony KRN, Connolly SR, Willis BL (2002) Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol Oceanogr 47:1417–1429. doi:10.4319/lo.2002.47.5.1417

    Article  Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci 105:17442–17446. doi:10.1073/pnas.0804478105

    Article  CAS  Google Scholar 

  • Atkinson MJ, Cuet P (2008) Contribution to the theme section “Effects of ocean acidification on marine ecosystems” possible effects of ocean acidification on coral reef biogeochemistry: topics for research. Mar Ecol Prog Ser 373:249–256. doi:10.3354/meps07867

    Article  CAS  Google Scholar 

  • Atkinson MJ, Carlson B, Crow GL (1995) Coral growth in high-nutrient, low-pH seawater: a case study of corals cultured at the Waikiki Aquarium, Honolulu, Hawaii. Coral Reefs 14:215–223. doi:10.1007/BF00334344

    Google Scholar 

  • Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365. doi:10.1038/425365a

    Article  CAS  Google Scholar 

  • Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2013a) The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnol Oceanogr (in press)

  • Comeau S, Carpenter RC, Edmunds PJ (2013b) Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proc Roy Soc B 280. doi:10.1098/rspb.2012.2374

  • Crawley A, Kline DI, Dunn S, Anthony K, Dove S (2010) The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Glob Change Biol 16:851–863. doi:10.1111/j.1365-2486.2009.01943.x

    Article  Google Scholar 

  • Davies PS (1989) Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar Biol 101:389–395

    Article  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (eds) (2007) Guide to best prac- tices for ocean CO2 measurements. PICES Special Publication 3

  • Edmunds PJ (2011) Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp. Limnol Oceanogr 56:2402–2410

    Article  CAS  Google Scholar 

  • Edmunds P (2012) Effect of pCO2 on the growth, respiration, and photophysiology of massive Porites spp. in Moorea, French Polynesia. Mar Biol:1–12. doi:10.1007/s00227-012-2001-y

  • Edmunds PJ, Brown D, Moriarty V (2012) Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea, French Polynesia. Glob Change Biol 18:2173–2183. doi:10.1111/j.1365-2486.2012.02695.x

    Article  Google Scholar 

  • Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183. doi:10.1093/icb/39.1.160

    CAS  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742. doi:10.1126/science.1152509

    Article  CAS  Google Scholar 

  • Holcomb M, McCorkle DC, Cohen AL (2010) Long-term effects of nutrient and CO2 enrichment on the temperate coral Astrangia poculata (Ellis and Solander, 1786). J Exp Mar Biol Ecol 386:27–33. doi:10.1016/j.jembe.2010.02.007

    Article  Google Scholar 

  • Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17. doi:10.1111/j.1469-185X.2008.00058.x

    Article  Google Scholar 

  • Houlbreque F, Tambutte E, Richard C, Ferrier-Pages C (2004) Importance of a micro-diet for scleractinian corals. Mar Ecol Prog Ser 282:151–160

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R et al (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933. doi:10.1126/science.1085046

    Article  CAS  Google Scholar 

  • Kleypas J, Yates K (2009) Coral reefs and ocean acidification. Oceanography 22:108–117. doi:10.5670/oceanog.2009.101

    Article  Google Scholar 

  • Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110:C09S07. doi:10.1029/2004JC002576

    Article  Google Scholar 

  • Lavigne H, Gattuso J-P (2011) seacarb: seawater carbonate chemistry with R. R package version 2.4.1. http://CRAN.Rproject.org/package=seacarb

  • Marsh JA (1970) Primary productivity of reef-building calcareous red algae. Ecology 51:255–263. doi:10.2307/1933661

    Article  Google Scholar 

  • Marubini F, Barnett H, Langdon C, Atkinson MJ (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Mar Ecol Prog Ser 220:153–162

    Article  CAS  Google Scholar 

  • McCulloch M, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Change 2:623–627

    Article  CAS  Google Scholar 

  • Mills MM, Lipschultz F, Sebens KP (2004) Particulate matter ingestion and associated nitrogen uptake by four species of scleractinian corals. Coral Reefs 23:311–323. doi:10.1007/s00338-004-0380-3

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  CAS  Google Scholar 

  • Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Ecosystems of the world. Elsevier, Amsterdam, pp 75–87

    Google Scholar 

  • Orr JC (2011) Recent and future changes in ocean carbonate chemistry. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, Oxford, pp 41–66

    Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422. doi:10.1126/science.1204794

    Article  CAS  Google Scholar 

  • Quinn GP, Keough MJ (eds) (2002) Experimental design and data analysis for biologists. Cambridge University Press, Melbourne

    Google Scholar 

  • Renegar DA, Riegl BM (2005) Effect of nutrient enrichment and elevated CO2 partial pressure on growth rate of Atlantic scleractinian coral Acropora cervicornis. Mar Ecol Prog Ser 293:69–76. doi:10.3354/meps293069

    Article  Google Scholar 

  • Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pagés C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Change Biol 9:1660–1668

    Article  Google Scholar 

  • Ries JB (2011) A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochim Cosmochim Acta 75:4053–4064. doi:10.1016/j.gca.2011.04.025

    Article  CAS  Google Scholar 

  • Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293

    Article  CAS  Google Scholar 

  • Stambler N (2011) Zooxanthellae: the yellow symbionts inside animals. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Netherland, pp 87–106

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank D. Brown and B. Lenz for field and laboratory assistance, NSF for financial support (OCE 10-41270), and the Moorea Coral Reef Long Term Ecological Research site (OCE 04-17413 and 10-26852) as well as the Gordon and Betty Moore Foundation for logistic support. This is contribution number 190 of the CSUN Marine Biology Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steeve Comeau.

Additional information

Communicated by M. G. Chapman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 495 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comeau, S., Carpenter, R.C. & Edmunds, P.J. Effects of feeding and light intensity on the response of the coral Porites rus to ocean acidification. Mar Biol 160, 1127–1134 (2013). https://doi.org/10.1007/s00227-012-2165-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2165-5

Keywords

Navigation