Skip to main content
Log in

Diets of fan shells (Pinna nobilis) of different sizes: fatty acid profiling of digestive gland and adductor muscle

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Pinna nobilis is a large bivalve, endemic to the Mediterranean Sea that was shown in a previous study to ingest significantly different proportions of different food items according to its shell height. Fatty acid profiling of total lipids was used to examine these differences in diet in relation to shell size. Small (shell height 23.0 ± 3.3 cm), medium (SH 41.5 ± 5.5 cm) and large (SH 62.7 ± 4.8 cm) P. nobilis were collected from Mali Ston Bay, Adriatic Sea, in March 2010, and fatty acid analysis was performed on digestive gland and adductor muscle tissues. Based on the analysis of the digestive gland, small P. nobilis were associated with a detrital food chain, characterized by saturated and branched-chain fatty acids, while the diets of medium and large individuals had a greater proportion of polyunsaturated fatty acids. This likely reflects the fact that smaller individuals feed within the benthic boundary layer where the detritus concentrations are high. Fatty acid incorporation into the adductor muscle, likely representative of food taken up over a longer time period, was reversed, that is, larger individuals had lower levels of polyunsaturated fatty acids. This most probably reflects energy expenditure, which typically increases with increasing organism size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn IY, Choo KW, Choi KS, Seo Y, Shin J (2000) Lipid content and composition of the Antarctic lamellibranch, Laternula elliptica (King & Broderip) (Anomalodesmata: Laternulidae), in King George Island during an austral summer. Polar Biol 23:24–33. doi:10.1007/s003000050004

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:910–917

    Article  Google Scholar 

  • Budge SM, Parrish CC (1998) Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay Newfoundland II. Fatty acids. Org Geochem 29:1547–1559

    Article  CAS  Google Scholar 

  • Butler A, Vincente N, De Gaulejac B (1993) Ecology of the pteroid bivalves Pinna bicolour Gmelin and Pinna nobilis L. Mar Life 3:37–45

    Google Scholar 

  • Cabanellas-Reboredo M, Deudero S, Blanco A (2009) Stable-isotope (δ13C and δ15N) of different tissues of Pinna nobilis Linnaeus, 1758 (Bivalvia); isotopic variations among tissues and between seasons. J Mollus Stud 75:343–349. doi:10.1093/mollus/eyp021

    Article  Google Scholar 

  • Cabanellas-Reboredo M, Blanco A, Deudero S, Tejada S (2010) Effects of the invasive macroalga Lophocladia lallemandii on the diet and trophism of Pinna nobilis (Mollusca: Bivalvia) and its guests Pontonia pinnophylax and Nepinnotheres pinnotheres (Crustacea: Decapoda). Sci Mar 74:101–110. doi:10.3989/scimar.2010.74n1101

  • Centoducati G, Tarsitano E, Bottalico A, Marvulli M, Lai OR, Crescenzo G (2007) Monitoring of the endangered Pinna nobilis Linne, 1758 in the Mar Grande of Taranto (Ionian Sea, Italy). Environ Monit Assess 131:339–347. doi:10.1007/s10661-006-9479-z

    Article  Google Scholar 

  • Chang YJ, Sagawara Y, Nomura T (1989) Structure and function of digestive diverticula in the scallop, Patinopecten yessoensis (Jay). Tohoku J Agr Res 39:81–93

    Google Scholar 

  • Dalsgaard J, John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340. doi:10.1016/S0065-2881(03)46005-7

    Article  Google Scholar 

  • Davenport J, Ezgeta-Balić D, Peharda M, Skejić S, Ninčević-Gladan Ž, Matijević S (2011) Size-differential feeding in Pinna nobilis L. (Mollusca: Bivalvia): exploitation of detritus, phytoplankton and zooplankton. Estuar Coast Shelf Sci 92:246–254. doi:10.1016/j.ecss.2010.12.033

    Article  Google Scholar 

  • Dunstan GA, Volkman JK, Barrett SM, Leroi JM, Jeffrey SW (1994) Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35:155–161. doi:10.1016/S0031-9422(00)90525-9

    Article  CAS  Google Scholar 

  • Ezgeta-Balić D, Najdek M, Peharda M, Blažina M (2012) Seasonal fatty acid profile analysis to trace origin of food sources of four commercially important bivalves. Aquaculture 334–337:89–100. doi:10.1016/j.aquaculture.2011.12.041

    Article  Google Scholar 

  • Freites L, Fernandez-Reiriz MJ, Labarta U (2002) Fatty acid profiles of Mytilus galloprovincialis (Lmk) mussel of subtidal and rocky shore origin. Comp Biochem Physiol B 132:453–461. doi:10.1016/S1096-4959(02)00057-X

    Article  Google Scholar 

  • Galinou-Mitsoudi S, Vlahavas G, Papoutsi O (2006) Population study of the protected bivalve Pinna nobilis (Linnaeus, 1758) in Thermaikos Gulf (North Aegean Sea). J Biol Res 5:47–53

    Google Scholar 

  • Graeve M, Dauby P, Scailteur Y (2001) Combined lipid, fatty acid and digestive tract content analyses: a penetrating approach to estimate feeding modes of Antarctic amphipods. Polar Biol 24:853–862. doi:10.1007/s003000100295

    Article  Google Scholar 

  • Hawkins AJS, Bayne BL (1991) Nutrition of marine mussels: factors influencing the relative utilizations of protein and energy. Aquaculture 94:177–196. doi:10.1016/0044-8486(91)90117-P

    Article  Google Scholar 

  • Katsanevakis S (2005) Population ecology of the endangered fan mussel Pinna nobilis in a marine lake. Endang Species Res 1:1–9. doi:10.3354/esr001051

    Google Scholar 

  • Katsanevakis S, Poursanidis D, Issaris Y, Panou A, Petza D, Vassilopoulou V, Chaldaiou I, Sini M (2011) “Protected” marine shelled molluscs: thriving in Greek seafood restaurants. Medit Mar Sci 12:429–438

    Google Scholar 

  • Kelly JR, Scheibling RE (2012) Fatty acids as dietary tracers in benthic food webs. Mar Ecol Prog Ser 446:1–22. doi:10.3354/meps09559

    Article  CAS  Google Scholar 

  • Kennedy H, Richardson CA, Duarte CM, Kennedy DP (2001) Diet and association of Pontonia pinnophylax occurring in Pinna nobilis: insights from stable isotope analysis. J Mar Biol Ass UK 81:177–178. doi:10.1017/S0025315401003575

    Article  Google Scholar 

  • Kharlamenko VI, Kiyashko SI, Imbs AB, Vyshkvartzev DI (2001) Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulphur stable isotope ratio and fatty acid analyses. Mar Ecol Prog Ser 220:103–117

    Article  CAS  Google Scholar 

  • Kiessling K-H, Kiessling A (1993) Selective utilization of fatty acids in rainbow trout (Oncorhynchus mykiss Walbaum) red muscle mitochondria. Can J Zool 71:248–251. doi:10.1139/z93-035

    Article  CAS  Google Scholar 

  • Labarta U, Fernandez-Reiriz M, Perez-Camacho A (1999) Dynamics of fatty acids in the larval development, metamorphosis and post-metamorphosis of Ostrea edulis (L.). Comp Biochem Physiol A 123:249–254. doi:10.1016/S1095-6433(99),00054-9

    Article  Google Scholar 

  • Latyshev NA, Khardin AS, Kasyanov SP, Ivanova MB (2004) A study on the feeding ecology of chitons using analysis of gut contents and fatty acid markers. J Moll Stud 70:225–230. doi:10.1093/mollus/70.3.225

    Article  Google Scholar 

  • Lorrain A, Paulet Y-M, Chauvaud L, Savoye N, Donoval A, Saout C (2002) Differential δ 13C and δ 15N signatures among scallop tissues: implications for ecology and physiology. J Exp Mar Biol Ecol 275:47–61. doi:10.1016/S0022-0981(02)00220-4

    Article  CAS  Google Scholar 

  • Mansour MP, Volkman JK, Jackson AE, Blackburn SE (1999) The fatty acid and sterol composition of five marine dinoflagellates. J Phycol 35:710–720. doi:10.1046/j.1529-8817.1999.3540710.x

    Article  CAS  Google Scholar 

  • Mayzaud P, Chanut JP, Ackman RG (1989) Seasonal changes of the biochemical composition of marine particulate matter with special reference to fatty acids and sterols. Mar Ecol Prog Ser 56:189–204

    Article  CAS  Google Scholar 

  • Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J Lipid Res 5:600–608

    CAS  Google Scholar 

  • Najdek M, Degobbis D, Mioković D, Ivančić I (2002) Fatty acid and phytoplankton composition of different types of mucilaginous aggregates in the northern Adriatic. J Plankton Res 24:429–441. doi:10.1093/plankt/24.5.429

    Article  CAS  Google Scholar 

  • Nanton DA, Castell JD (1998) The effects of dietary fatty acids on the fatty acid composition of the harpacticoid copepod, Tisbe sp., for use as a live food for marine fish larvae. Aquaculture 163:251–261. doi:10.1016/S0044-8486(98)00236-1

    Article  CAS  Google Scholar 

  • Napolitano GE, Ackman RG (1993) Fatty acid dynamics in sea scallops Placopecten magellanicus (Gmelin 1791) from Georges Bank, Nova Scotia. J Shellfish Res 12:267–277

    Google Scholar 

  • Napolitano GE, Ratnayake WMN, Ackman RG (1988) Fatty acid components of larval Ostrea edulis (L.): importance of triacylglycerols as a fatty acid reserve. Comp Biochem Physiol B 90:875–883

    CAS  Google Scholar 

  • Parrish CC, French VM, Whiticar MJ (2012) Lipid class and fatty acid composition of copepods (Calanus finmarchicus, C. glacialis, Pseudocalanus sp., Tisbe furcata and Nitokra lacustris) fed various combinations of autotrophic and heterotrophic protists. J Plankton Res 34:356–375. doi:10.1093/plankt/fbs003

    Article  CAS  Google Scholar 

  • Peharda M, Ezgeta-Balić D, Davenport J, Bojanić N, Vidjak O, Ninčević-Gladan Ž (2012) Differential ingestion of zooplankton by four species of bivalves (Mollusca) in Mali Ston Bay, Croatia. Mar Biol 159:881–895. doi:10.1007/s00227-011-1866-5

    Article  Google Scholar 

  • Pernet F, Tremblay R, Comeau L, Guderley H (2007) Temperature adaptation in two bivalve species from different thermal habitats: energetics and remodelling of membrane lipids. J Exp Biol 210:2999–3014

    Article  Google Scholar 

  • Piola RF, Moore SK, Suthers IM (2006) Carbon and nitrogen stable isotope analysis of three types of oyster tissue in an impacted estuary. Est Coast Shelf Sci 66:255–266. doi:10.1016/j.ecss.2005.08.013

    Article  Google Scholar 

  • Pirini M, Manuzzi MP, Pagliarani A, Trombetti F, Borgatti AR, Ventrella V (2007) Changes in fatty acid composition of Mytilus galloprovincialis (Lmk) fed on microalgal and wheat germ diets. Comp Biochem Physiol B 147:616–626. doi:10.1016/j.cbpb.2007.04.003

    Article  Google Scholar 

  • Redmond K, Magnesen T, Hansen PK, Strand Ø, Meier S (2010) Stable isotopes and fatty acids as tracers of the assimilation of salmon fish feed in blue mussels (Mytilus edulis). Aquaculture 298:202–210

    Article  CAS  Google Scholar 

  • Richardson CA, Kennedy H, Duarte CM, Kennedy DP, Proud SV (1999) Age and growth of the fan mussel Pinna nobilis from south–east Spanish Mediterranean sea grass (Posidonia oceanica) meadows. Mar Biol 133:205–212. doi:10.1007/s002270050459

    Article  Google Scholar 

  • Sargent JR (1995) Origins and functions of egg lipids: nutritional implications. In: Bromage NR, Roberts RJ (eds) Broodstock management and egg and larval quality, 1st edn. Blackwell Sciences Ltd, Oxford, pp 353–372

    Google Scholar 

  • Shin PKS, Yip KM, Xu WZ, Wong WH, Cheung SG (2008) Fatty acids as markers to demonstrating trophic relationships among diatoms, rotifers and green-lipped mussels. J Exp Mar Biol Ecol 357:75–84. doi:10.1016/j.jembe.2008.01.002

    Article  CAS  Google Scholar 

  • Silina AV, Zhukova NV (2007) Growth variability and feeding of scallop Patinopecten yessoensis on different bottom sediments: evidence from fatty acid analysis. J Exp Mar Biol Ecol 348:46–59. doi:10.1016/j.jembe.2007.03.018

    Article  CAS  Google Scholar 

  • Soudant P, Van Ryckeghem K, Marty Y, Moal J, Samain JF, Sorgeloos P (1999) Comparison of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard hatchery conditioning of the Pacific oyster Crassostrea gigas. Comp Biochem Physiol Part B 123:209–222. doi:10.1016/S0305-0491(99),00063-2

    Article  Google Scholar 

  • Tieszen LL, Boutton TW, Tesdahl KG, Slade NA (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: implication for δ13C analysis of diet. Oecologia 57:32–37

    Article  Google Scholar 

  • Wilson SE, Steinberg DK, Chu F-LE, Bishop JKB (2010) Feeding ecology of mesopelagic zooplankton of the subtropical and subarctic North Pacific Ocean determined with fatty acid biomarkers. Deep-Sea Res Part I 57:1278–1294. doi:10.1016/j.dsr.2010.07.005

    Article  CAS  Google Scholar 

  • Zavodnik D, Hrs-Brenko M, Legac M (1991) Synopsis on the fan shell Pinna nobilis L. in the Eastern Adriatic Sea. In: Boudouresque CF, Avon M, Gravez V (eds) Les espèces marines à protéger en Méditerranée. GIS Posidonie Publications Marseille, France, pp 169–178

    Google Scholar 

  • Zhukova NV, Kharlamenko VI (1999) Sources of essential fatty acids in the marine microbial loop. Aquat Microb Ecol 17:153–157

    Article  Google Scholar 

Download references

Acknowledgments

This research was financed by the Croatian Ministry of Science and Technology grant N. 098-0982705-2729 ‘Structure and physiology of microbial communities in northern Adriatic fronts’ and grant N. 001-0013077-0532 ‘Biodiversity and sustainable management of pelagic and demersal resources in the Adriatic’. The authors are grateful to Maro Franušić and Prof. John Davenport for help provided during fieldwork, Ksenija Matošović for laboratory work and Prof. Brian Morton and two anonymous reviewers for useful suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Najdek.

Additional information

Communicated by J. P. Grassle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

227_2012_2144_MOESM1_ESM.tif

Supplementary material 1 (TIFF 1003 kb). Map of study area showing position (42°51′48′’N, 17°41′00′’E) of sampling station (Black circle)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najdek, M., Blažina, M., Ezgeta-Balić, D. et al. Diets of fan shells (Pinna nobilis) of different sizes: fatty acid profiling of digestive gland and adductor muscle. Mar Biol 160, 921–930 (2013). https://doi.org/10.1007/s00227-012-2144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2144-x

Keywords

Navigation