Advertisement

Marine Biology

, Volume 160, Issue 3, pp 579–590 | Cite as

Predators of juvenile sea urchins and the effect of habitat refuges

  • S. ClementeEmail author
  • J. C. Hernández
  • G. Montaño-Moctezuma
  • M. P. Russell
  • T. A. Ebert
Original Paper

Abstract

We evaluated the effects of potential predators from intertidal habitats on Strongylocentrotus purpuratus survival using laboratory experiments and assessed abundances of main predatory species along the Pacific coast of North America. The interactive effects of urchins’ and predators’ sizes in mediating predation were quantified. Habitat complexity (substrate pits, adult spine canopy) was manipulated to examine its effects on predation of most susceptible individuals (<14 mm). Pachygrapsus crassipes was identified as a major predator of urchins up to ≈30 mm. A positive effect of predator size on consumption of progressively larger urchins was detected, probably due to a mechanical limitation on crabs’ ability to consume large prey. Larger claws of males with respect to females of comparable sizes facilitated the handling of larger prey. Substrate refuges significantly reduced mortality on juvenile urchins. These results show that crab predation may be important in organizing intertidal communities, despite multiple ecological mechanisms promoting sea urchin survival.

Keywords

Carapace Width Test Diameter Crab Predator Crab Size Spatial Refuge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the staff from ‘Instituto de Investigaciones Oceanológicas’ (Universidad Autónoma de Baja California) for providing facilities and maintenance at the flowing seawater laboratory. S.C. benefited from postdoctoral fellowship from ‘Fundación Alfonso Martín Escudero’. The Ocean Science Division Biological Oceanography of the US National Science Foundation supported this study.

Supplementary material

227_2012_2114_MOESM1_ESM.pdf (127 kb)
Supplementary material 1 (PDF 127 kb)

References

  1. Anderson MJ (2001) Permutational tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci 58:626–639CrossRefGoogle Scholar
  2. Andrew NL (1993) Spatial heterogeneity, sea urchin grazing, and habitat structure on reefs in temperate Australia. Ecology 74:292–302CrossRefGoogle Scholar
  3. Andrew NL, Choat JH (1982) The influence of predation and conspecific adults on the survivorship of juvenile Evechinus chloroticus (Echinoidea: Echinometridae). Oecologia 54:80–87CrossRefGoogle Scholar
  4. Bernstein BB, Williams BE, Mann KH (1981) The role of behavioural responses to predators in modifying urchins’ (Strongylocentrotus droebachiensis) destructive grazing and seasonal foraging patterns. Mar Biol 63:39–49CrossRefGoogle Scholar
  5. Breen PA, Carolsfeld W, Yamanaka KL (1985) Social behaviour of juvenile red sea urchins, Strongylocentrotus franciscanus (Agassiz). J Exp Mar Biol Ecol 92:45–61CrossRefGoogle Scholar
  6. Cameron RA, Schroeter SC (1980) Sea urchin recruitment: effect of substrate selection on juvenile distribution. Mar Ecol Prog Ser 2:243–247CrossRefGoogle Scholar
  7. Carpenter RC (1984) Predator and population density control of homing behavior in the Caribbean echinoid Diadema antillarum. Mar Biol 82:101–108CrossRefGoogle Scholar
  8. Cassone BJ, Boulding EG (2006) Genetic structure and phylogeography of the lined shore crab, Pachygrapsus crassipes, along the northeastern and western Pacific coasts. Mar Biol 149:213–226CrossRefGoogle Scholar
  9. Chapin D (1968) Some observations of predation of Acmaea species by the crab Pachygrapsus crassipes. Veliger 11:67–69Google Scholar
  10. Clemente S, Hernández JC, Brito A (2009) Evidence of the top–down role of predators in structuring sublittoral rocky-reef communities in a Marine Protected Area and nearby areas of the Canary Islands. ICES J Mar Sci 66:64–71CrossRefGoogle Scholar
  11. Clemente S, Hernández JC, Rodríguez A, Brito A (2010) Identifying keystone predators and the importance of preserving functional diversity in sublittoral rocky bottoms. Mar Ecol Prog Ser 413:55–67CrossRefGoogle Scholar
  12. Connell JH (1975) Some mechanisms producing structure in natural communities: a model and evidence from field experiments. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge, pp 460–490Google Scholar
  13. Dayton PK, Rosenthal RJ, Mahen LC, Antezana T (1977) Population structure and foraging biology of predaceous Chilean asteroid Meyenaster gelatinosus and escape biology of its prey. Mar Biol 39:361–370CrossRefGoogle Scholar
  14. Duffy JE, Hay ME (2001) The ecology and evolution of marine Consumer-Prey interactions. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer, Sunderland, pp 131–157Google Scholar
  15. Dumont CP, Himmelman JH, Russell MP (2006) Daily movement of the sea urchin Strongylocentrotus droebachiensis in different subtidal habitats in eastern Canada. Mar Ecol Prog Ser 317:87–99CrossRefGoogle Scholar
  16. Ebert TA (1983) Recruitment in echinoderms. In: Jangoux M, Lawrence JM (eds) Echinoderm studies, vol 1. Balkema, Rotterdam, pp 169–203Google Scholar
  17. Ebert TA (2007) Sea urchins. In: Denny M, Gaines S (eds) Encyclopedia of tidepools and rocky shores. University of California Press, Berkely, pp 510–513Google Scholar
  18. Ebert TA (2010) Demographic patterns of the purple sea urchin Strongylocentrotus purpuratus along a latitudinal gradient, 1985–1987. Mar Ecol Prog Ser 406:105–120CrossRefGoogle Scholar
  19. Elner RW, Hughes RN (1978) Energy maximization in the diet of the shore crab, Carcinus maenas. J Anim Ecol 47:103–116CrossRefGoogle Scholar
  20. Feder HM (1959) The food of the starfish, Pisaster ochraceus, along the California coast. Ecology 40:721–724CrossRefGoogle Scholar
  21. Garth JS, Abbott DP (1980) Brachyura: the true crabs. In: Morris RH, Abbott DP, Haderlie EC (eds) Intertidal invertebrates of California. Stanford University Press, Stanford, pp 594–630Google Scholar
  22. Gaymer CF, Himmelman JH (2008) A keystone predatory sea star in the intertidal zone is controlled by a higher order predatory sea star in the subtidal zone. Mar Ecol Prog Ser 370:143–153CrossRefGoogle Scholar
  23. Grupe BM (2006) Purple sea urchins (Strongylocentrotus purpuratus) in and out of pits: the effects of microhabitat on population structure, morphology, growth, and mortality. MS thesis, University of OregonGoogle Scholar
  24. Guidetti P, Bussotti S, Boero F (2005) Evaluating the effects of protection on fish predators and sea urchins in shallow artificial rocky reefs habitats: a case study in the northern Adriatic Sea. Mar Environ Res 59:333–348CrossRefGoogle Scholar
  25. Hariston NG, Smith FE, Slobodkin LB (1960) Community structure population control and competition. Am Nat 94:421–425CrossRefGoogle Scholar
  26. Harrold C, Reed DC (1985) Food availability, sea urchin grazing, and kelp forest community structure. Ecology 66:1160–1169CrossRefGoogle Scholar
  27. Hereu B, Zabala M, Linares C, Sala E (2005) The effects of predator abundance and habitat structural complexity on survival of juvenile urchins. Mar Biol 146:293–299CrossRefGoogle Scholar
  28. Hernández JC, Russell MP (2010) Substratum cavities affect growth-plasticity, allometry, movement, and feeding rates in the sea urchin Strongylocentrotus purpuratus. J Exp Biol 213:520–525CrossRefGoogle Scholar
  29. Hernández JC, Clemente S, Girard D, Pérez-Ruzafa A, Brito A (2010) Effect of temperature on settlement and postsettlement survival in a barrens-forming sea urchin. Mar Ecol Prog Ser 413:69–80CrossRefGoogle Scholar
  30. Hiatt RW (1948) The biology of the lined shore crab, Pachygrapsus crassipes Randall. Pac Sci 2:135–213Google Scholar
  31. Highsmith RC (1982) Induced settlement and metamorphosis of sand dollar (Dendraster excentricus) larvae in predator-free sites: adult sand dollar beds. Ecology 63:329–337CrossRefGoogle Scholar
  32. Himmelman JH (1986) Population biology of green sea urchins on rocky barrens. Mar Ecol Prog Ser 33:295–306CrossRefGoogle Scholar
  33. Hughes RN, Seed R (1981) Size selection of mussels by the blue crab Callinectes sapidus: energy maximizer or time minimizer? Mar Ecol Prog Ser 6:83–89CrossRefGoogle Scholar
  34. Hunt HL, Scheibling RE (1997) The role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar Ecol Prog Ser 155:269–301CrossRefGoogle Scholar
  35. Jennings LB, Hunt HL (2010) Settlement, recruitment and potential predators and competitors of juvenile echinoderms in the rocky subtidal zone. Mar Biol 157:307–316CrossRefGoogle Scholar
  36. Keats DW, South GR, Steele DH (1985) Ecology of juvenile green sea urchins (Strongylocentrotus droebachiensis) at an urchin dominated subtidal site in eastern Newfoundland. In: Keegan BF, O’Connor BDS (eds) Echinodermata. Balkema, Rotterdam, pp 295–302Google Scholar
  37. Lessios HA (1988) Population dynamics of Diadema antillarum (Echinodermata: Echinoidea) following mass mortality in Panama. Mar Biol 95:515–526CrossRefGoogle Scholar
  38. Mann KH, Wright JLC, Welsford BE, Hatfield E (1984) Responses of the sea urchin Strongylocentrotus droebachiensis (O.F. Muller) to water-borne stimuli from potential predators and potential food algae. J Exp Mar Biol Ecol 79:233–244CrossRefGoogle Scholar
  39. Mauzey KP (1966) Feeding behavior and reproductive cycles in Pisaster ochraceus. Biol Bull 131:127–144CrossRefGoogle Scholar
  40. McClanahan TR (1998) Predation and the distribution and abundance of tropical sea urchin populations. J Exp Mar Biol Ecol 221:231–255CrossRefGoogle Scholar
  41. McClanahan TR, Kurtis JD (1991) Population regulation of the rock-boring sea urchin Echinometra mathaei (de Blainville). J Exp Mar Biol Ecol 147:121–146CrossRefGoogle Scholar
  42. McClanahan TR, Muthiga NA (1989) Patterns of predation on a sea urchin, Echinometra mathaei (de Blainville), on Kenyan coral reefs. J Exp Mar Biol Ecol 126:77–94CrossRefGoogle Scholar
  43. Menge BA, Sutherland JP (1976) Species diversity gradients: synthesis of the roles of predation, competition, and temporal heterogeneity. Am Nat 110:351–369CrossRefGoogle Scholar
  44. Menge BA, Sutherland JP (1987) Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am Nat 130:730–757CrossRefGoogle Scholar
  45. Nishizaki MT, Ackerman JD (2007) Juvenile-adult associations in sea urchins (Strongylocentrotus franciscanus and S. droebachiensis): protection from predation and hydrodynamics in S. franciscanus. Mar Biol 151:135–145CrossRefGoogle Scholar
  46. Ojeda FP, Dearborn JH (1991) Feeding ecology of benthic mobile predators: experimental analyses of their influence in rocky subtidal communities of the Gulf of Maine. J Exp Mar Biol Ecol 149:13–44CrossRefGoogle Scholar
  47. Paine RT (1980) Food webs linkage interaction strength and community infrastructure. J Anim Ecol 49:667–685CrossRefGoogle Scholar
  48. Pearse JS (2007) Ecological role of purple sea urchins. Science 314:940–941CrossRefGoogle Scholar
  49. Pearse JS, Hines AH (1987) Long-term population dynamics of sea urchins in a central California kelp forest: rare recruitment and rapid decline. Mar Ecol Prog Ser 39:275–283CrossRefGoogle Scholar
  50. Raymond BG, Scheibling RE (1987) Recruitment and growth of the sea urchin Strongylocentrotus droebachiensis (Müller) following mass mortalities off Nova Scotia, Canada. J Exp Mar Biol Ecol 108:31–54CrossRefGoogle Scholar
  51. Ricketts EF, Calvin J, Phillips DW, Hedgpeth JW (1985) Between pacific tides. Stanford University Press, Palo AltoGoogle Scholar
  52. Roberts CM, Ormond RFG (1987) Habitat complexity and coral reef fishes diversity and abundance on Red Sea fringing reefs. Mar Ecol Prog Ser 41:1–8CrossRefGoogle Scholar
  53. Robles C, Sweetnam D, Eminike J (1990) Lobster predation on mussels: shore-level differences in prey vulnerability and predator preference. Ecology 71:l564–l1577CrossRefGoogle Scholar
  54. Rogers-Bennett L, Pearse JS (2002) Indirect benefits of marine protected areas for juvenile abalone. Conserv Biol 13:642–647Google Scholar
  55. Rowley RJ (1990) Newly settled sea urchins in a kelp bed and urchin barren ground: a comparison of growth and mortality. Mar Ecol Prog Ser 62:229–240CrossRefGoogle Scholar
  56. Sagarin RD, Gaines SD (2002) Geographical abundance distributions of coastal invertebrates: using one-dimensional ranges to test biogeographic hypotheses. J Biogeogr 29:985–997CrossRefGoogle Scholar
  57. Sala E, Zabala M (1996) Fish predation and the structure of sea urchin Paracentrotus lividus populations in the NW Mediterranean. Mar Ecol Prog Ser 140:71–81CrossRefGoogle Scholar
  58. Sala E, Boudouresque CF, Harmelin-Vivien M (1998) Fishing, trophic cascades, and the structure of algal assemblages: evaluation of an old but untested paradigm. Oikos 82:425–439CrossRefGoogle Scholar
  59. Sanchez-Salalar ME, Griffiths CL, Seed R (1987) The effect of size and temperature on the predation of cockles Cerastoderma edule (L.) by the shore crab Carcinus maenas (L.). J Exp Mar Biol Ecol 111:181–193CrossRefGoogle Scholar
  60. Scheibling RE (1984) Echinoids, epizootics and ecological stability in the rocky subtidal off Nova Scotia, Canada. Helgoland Mar Res 37:233–242Google Scholar
  61. Scheibling RE (1996) The role of predation in regulating sea urchin populations in eastern Canada. Oceanol Acta 19:421–430Google Scholar
  62. Scheibling RE, Hamm J (1991) Interactions between sea urchins (Strongylocentrotus droebachiensis) and their predators in field and laboratory experiments. Mar Biol 110:105–116CrossRefGoogle Scholar
  63. Scheibling RE, Robinson MC (2008) Settlement behaviour and early post-settlement predation of the sea urchin Strongylocentrotus droebachiensis. J Exp Mar Biol Ecol 365:59–66CrossRefGoogle Scholar
  64. Sebens KP (1985) The ecology of the rocky subtidal zone. Am Sci 73:548–557Google Scholar
  65. Shears NT, Babcock RC (2002) Marine reserves demonstrate top-down control of community structure on temperate reefs. Oecologia 132:131–142CrossRefGoogle Scholar
  66. Sousa WP (1993) Size-dependent predation on the salt-marsh snail Cerithideacalzjbrnica Haldeman. J Exp Mar Biol Ecol 166:19–37CrossRefGoogle Scholar
  67. Squires HJ (1990) Decapod Crustacea of the Atlantic coast of Canada. Can Bull Fish Aquat Sci 221:532Google Scholar
  68. Tegner MJ, Dayton PK (1977) Sea urchin recruitment patterns and implications of commercial fishing. Science 196:324–326CrossRefGoogle Scholar
  69. Tegner MJ, Dayton PK (1981) Population structure, recruitment and mortality of two sea urchins (Strongylocentrotus franciscanus and S. purpuratus) in kelp forests. Mar Ecol Prog Ser 5:255–268CrossRefGoogle Scholar
  70. Tegner MJ, Levin LA (1983) Spiny lobsters and sea urchins: analysis of a predator-prey interaction. J Exp Mar Biol Ecol 73:125–150CrossRefGoogle Scholar
  71. Underwood AJ, Fairweather PG (1989) Supply-side Ecology and benthic marine assemblajes. Trends Ecol Evol 4:16–20CrossRefGoogle Scholar
  72. Urriago JD, Himmelman JH, Gaymer CF (2012) Sea urchin Tetrapygus niger distribution on elevated surfaces represents a strategy for avoiding predatory sea stars. Mar Ecol Prog Ser 444:85–95CrossRefGoogle Scholar
  73. Wicksten MK (2009) Decapod crustacea of the californian and oregonian zoogeographic provinces. Scripps Institution of Oceanography Library, Scripps Institution of Oceanography, UC San DiegoGoogle Scholar
  74. Witman JD (1985) Refuges, biological disturbance, and rocky subtidal community structure in New England. Ecol Monogr 55:421–445CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Clemente
    • 1
    • 4
    Email author
  • J. C. Hernández
    • 1
    • 4
  • G. Montaño-Moctezuma
    • 2
  • M. P. Russell
    • 1
  • T. A. Ebert
    • 3
  1. 1.Biology DepartmentVillanova UniversityVillanovaUSA
  2. 2.Instituto de Investigaciones OceanológicasUniversidad Autónoma de Baja CaliforniaEnsenadaMexico
  3. 3.Zoology DepartmentOregon State UniversityCorvallisUSA
  4. 4.Biodiversidad, Ecología Marina y Conservación, Departamento de Biología Animal (Ciencias Marinas), Facultad de BiologíaUniversidad de La LagunaTenerifeCanary Islands

Personalised recommendations