Advertisement

Marine Biology

, Volume 160, Issue 3, pp 563–577 | Cite as

PSII activity and pigment dynamics of Symbiodinium in two Indo-Pacific corals exposed to short-term high-light stress

  • Wiebke E. KrämerEmail author
  • Verena Schrameyer
  • Ross Hill
  • Peter J. Ralph
  • Kai Bischof
Original Paper

Abstract

This study examined the capacity for photoprotection and repair of photo-inactivated photosystem II in the same Symbiodinium clade associated with two coexisting coral species during high-light stress in order to test for the modulation of the symbiont’s photobiological response by the coral host. After 4 days exposure to in situ irradiance, symbionts of the bleaching-sensitive Pocillopora damicornis showed rapid synthesis of photoprotective pigments (by 44 %) and strongly enhanced rates of xanthophyll cycling (by 446 %) while being insufficient to prevent photoinhibition (sustained loss in F v/F m at night) and loss of symbionts after 4 days. By contrast, Pavona decussata showed no significant changes in F v/F m, symbiont density or xanthophyll cycling. Given the association with the same Symbiodinium clade in both coral species, our findings suggest that symbionts in the two species examined may experience different in hospite light conditions as a result of different biometric properties of the coral host.

Keywords

Coral Species Lincomycin Effective Quantum Yield Coral Host Symbiotic Dinoflagellate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to Malin Gustafsson for valuable field assistance and to the staff of Heron Island Research Station for their support. Furthermore, we would like to thank the anonymous reviewers and Dr. David Suggett for their detailed critical comments and suggestions on earlier versions of this paper. This study was financially supported by the Comprehensive Research Funding Programme (CRFP) at the University of Bremen (Project No. 02/115/06). We also thanks support by the Bremen International Graduate School for Marine Sciences (GLOMAR) that is funded by the German Research Foundation (DFG) within the frame of the Excellence Initiative by the German federal and state governments to promote science and research at German universities. Further, this project was supported by means of the Terry Walker Price awarded by the Australian Coral Reef Society (ACRS) to Verena Schrameyer in 2010. Corals were collected under Great Barrier Marine Park Authority (GBRMPA) permit number G09/30854.1.

References

  1. Ambarsari I, Brown B, Barlow R, Britton G, Cummings D (1997) Fluctuations in algal chlorophyll and carotenoid pigments during solar bleaching in the coral Goniastrea aspera at Phuket, Thailand. Mar Ecol Prog Ser 159:303–307. doi: 10.3354/meps159303 CrossRefGoogle Scholar
  2. Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi: 10.1146/annurev.arplant.50.1.601 CrossRefGoogle Scholar
  3. Bachmann K, Ebbert V, Adams W III, Verhoeven A, Logan B, Demmig-Adams B (2004) Effects of lincomycin on PSII efficiency, non-photochemical quenching, D1 protein and xanthophyll cycle during photoinhibition and recovery. Funct Plant Biol 31:803–813. doi: 10.1071/FP04022 CrossRefGoogle Scholar
  4. Baird A, Bhagooli R, Ralph P, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24:16–20. doi: 10.1016/j.tree.2008.09.005 CrossRefGoogle Scholar
  5. Barbrook AC, Visram S, Douglas AE, Howe CJ (2006) Molecular diversity of dinoflagellate symbionts of Cnidaria: the psbA minicircle of Symbiodinium. Protist 157:159–171. doi: 10.1016/j.protis.2005.12.002 CrossRefGoogle Scholar
  6. Berkelmans R, van Oppen M (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond B Biol Sci 273:2305–2312. doi: 10.1098/rspb.2006.3567 CrossRefGoogle Scholar
  7. Bhagooli R, Hidaka M (2003) Comparison of stress susceptibility of in hospite and isolated zooxanthellae among five coral species. J Exp Mar Biol Ecol 291:181–197CrossRefGoogle Scholar
  8. Bhagooli R, Hidaka M (2004) Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses. Comp Biochem Physiol A: Mol Integr Physiol 137:547–555. doi: 10.1016/j.cbpb.2003.11.008 CrossRefGoogle Scholar
  9. Brown B, Ambarsari I, Warner M, Fitt W, Dunne R, Gibb S, Cummings D (1999) Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18:99–105. doi: 10.1007/s003380050163 CrossRefGoogle Scholar
  10. Brown B, Downs C, Dunne R, Gibb S (2002) Preliminary evidence for tissue retraction as a factor in photoprotection of corals incapable of xanthophyll cycling. J Exp Mar Biol Ecol 277:129–144. doi: 10.1016/S0022-0981(02)00305-2 CrossRefGoogle Scholar
  11. Campbell DA, Tyystjärvi E (2012) Parameterization of photosystem II photoinactivation and repair. Biochim Biophys Acta 1817:258–265. doi: 10.1016/j.bbabio.2011.04.010 CrossRefGoogle Scholar
  12. Coffroth M, Santos S (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34. doi: 10.1016/j.protis.2005.02.004 CrossRefGoogle Scholar
  13. Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21. doi: 10.1111/j.1469-8137.2006.01835.x CrossRefGoogle Scholar
  14. Dimond JL, Holzman BJ, Bingham BL (2012) Thicker host tissues moderate light stress in a cnidarian endosymbiont. J Exp Biol 215:2247–2254. doi: 10.1242/jeb.067991 CrossRefGoogle Scholar
  15. Dove S, Hoegh-Guldberg O, Ranganathan S (2001) Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19:197–204. doi: 10.1007/PL00006956 CrossRefGoogle Scholar
  16. Dove S, Ortiz J, Enríquez S, Fine M, Fisher P, Iglesias-Prieto R, Thornhill D, Hoegh-Guldberg O (2006) Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. Limnol Oceanogr 51:1149–1158. doi: 10.4319/lo.2006.51.2.1149 CrossRefGoogle Scholar
  17. Dunlap WC, Shick J (1998) Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J Phycol 34:418–430. doi: 10.1046/j.1529-8817.1998.340418.x CrossRefGoogle Scholar
  18. Edelman M, Mattoo AK (2008) D1-protein dynamics in photosystem II: the lingering enigma. Photosynth Res 98:609–620. doi: 10.1007/s11120-008-9342-x CrossRefGoogle Scholar
  19. Ellis RJ (1975) Inhibition of chloroplast protein synthesis by lincomycin and 2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide. Phytochem 14:89–93CrossRefGoogle Scholar
  20. Enríquez S, Méndez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032. doi: 10.4319/lo.2005.50.4.1025 CrossRefGoogle Scholar
  21. Fisher PL, Malme MK, Dove S (2012) The effect of temperature stress on coral–Symbiodinium associations containing distinct symbiont types. Coral Reefs 31:473–485. doi: 10.1007/s00338-011-0853-0 CrossRefGoogle Scholar
  22. Fitt WK, Spero HJ, Halas J, White MW, Porter JW (1993) Recovery of the coral Montastrea annularis in the Florida Keys after the 1987 Caribbean “bleaching event”. Coral Reefs 12:57–64. doi: 10.1007/bf00302102 CrossRefGoogle Scholar
  23. Fitt W, Gates R, Hoegh-Guldberg O, Bythell J, Jatkar A, Grottoli A, Gomez M, Fisher P, LaJeunesse T, Pantos O, Iglesias-Prieto R, Franklin D, Rodrigues L, Torregiani J, van Woesik R, Lesser M (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373:102–110. doi: 10.1016/j.jembe.2009.03.011 CrossRefGoogle Scholar
  24. Franklin DJ, Cedrés CMM, Hoegh-Guldberg O (2006) Increased mortality and photoinhibition in the symbiotic dinoflagellates of the Indo–Pacific coral Stylophora pistillata (Esper) after summer bleaching. Mar Biol 149:633–642. doi: 10.1007/s00227-005-0230-z CrossRefGoogle Scholar
  25. Freudenthal HD (1962) Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella: taxonomy, life cycle, and morphology. J Eukaryot Microbiol 9:45–52. doi: 10.1111/j.1550-7408.1962.tb02579.x CrossRefGoogle Scholar
  26. Genty B, Briantais J, Baker N (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi: 10.1016/S0304-4165(89)80016-9 CrossRefGoogle Scholar
  27. Glynn P (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17. doi: 10.1007/BF00303779 CrossRefGoogle Scholar
  28. Gorbunov M, Kolber Z, Lesser M, Falkowski P (2001) Photosynthesis and photoprotection in symbiotic corals. Limnol Oceanogr 46:75–85. doi: 10.4319/lo.2001.46.1.0075 CrossRefGoogle Scholar
  29. Hennige S, Suggett D, Warner M, McDougall K, Smith D (2009) Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. Coral Reefs 28:179–195CrossRefGoogle Scholar
  30. Hennige SJ, McGinley MP, Grottoli AG, Warner ME (2011) Photoinhibition of Symbiodinium spp. within the reef corals Montastraea faveolata and Porites astreoides: implications for coral bleaching. Mar Biol 158:2515–2526. doi: 10.1007/s00227-011-1752-1 CrossRefGoogle Scholar
  31. Hill R, Ralph PJ (2005) Diel and seasonal changes in fluorescence rise kinetics of three scleractinian corals. Funct Plant Biol 32:549–559. doi: 10.1071/FP05017 CrossRefGoogle Scholar
  32. Hill R, Frankart C, Ralph PJ (2005) Impact of bleaching conditions on the components of non-photochemical quenching in the zooxanthellae of a coral. J Exp Mar Biol Ecol 322:83–92. doi: 10.1016/j.jembe.2005.02.011 CrossRefGoogle Scholar
  33. Hill R, Ulstrup K, Ralph P (2009) Temperature induced changes in thylakoid membrane thermostability of cultured, freshly isolated, and expelled zooxanthellae from scleractinian corals. Bull Mar Sci 85:223–244Google Scholar
  34. Hill R, Brown CM, DeZeeuw K, Campbell DA, Ralph PJ (2011) Increased rate of D1 repair in coral symbionts during bleaching is insufficient to counter accelerated photo-inactivation. Limnol Oceanogr 56:139–146. doi: 10.4319/lo.2011.56.1.0139 CrossRefGoogle Scholar
  35. Hill R, Larkum AWD, Prášil O, Kramer DM, Szabó M, Kumar V, Ralph PJ (2012) Light-induced dissociation of antenna complexes in the symbionts of scleractinian corals correlates with sensitivity to coral bleaching. Coral Reefs. doi: 10.1007/s00338-012-0914-z Google Scholar
  36. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshwater Res 50:839–866. doi: 10.1071/MF99078 CrossRefGoogle Scholar
  37. Hoegh-Guldberg O (2011) Coral reef ecosystems and anthropogenic climate change. Reg Environ Change 11:215–227. doi: 10.1007/s10113-010-0189-2 CrossRefGoogle Scholar
  38. Hoegh-Guldberg O, Jones R (1999) Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar Ecol Prog Ser 183:73–86. doi: 10.3354/meps183073 CrossRefGoogle Scholar
  39. Hoegh-Guldberg O, Salvat B (1995) Periodic mass-bleaching and elevated sea temperatures: bleaching of outer reef slope communities in Moorea, French Polynesia. Mar Ecol Prog Ser 121:181–190. doi: 10.3354/meps121181 CrossRefGoogle Scholar
  40. Hoegh-Guldberg O, Smith GJ (1989a) The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J Exp Mar Biol Ecol 129:279–303. doi: 10.1016/0022-0981(89)90109-3 CrossRefGoogle Scholar
  41. Hoegh-Guldberg O, Smith GJ (1989b) Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata. Mar Ecol Prog Ser 57:173–186. doi: 10.4319/lo.2008.53.5.1853 CrossRefGoogle Scholar
  42. Iglesias-Prieto R, Beltrán V, LaJeunesse T, Reyes-Bonilla H, Thomé P (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond B Biol Sci 271:1757–1763. doi: 10.1098/rspb.2004.2757 CrossRefGoogle Scholar
  43. Jimenez I, Kühl M, Larkum A, Ralph P (2008) Heat budget and thermal microenvironment of shallow-water corals: do massive corals get warmer than branching corals? Limnol Oceanogr 53:1548–1561. doi: 10.4319/lo.2008.53.4.1548 CrossRefGoogle Scholar
  44. Jimenez IM, Kühl M, Larkum AW, Ralph PJ (2011) Effects of flow and colony morphology on the thermal boundary layer of corals. J R Soc Interface 8:1785–1795. doi: 10.1098/rsif.2011.0144 CrossRefGoogle Scholar
  45. Jimenez IM, Larkum AWD, Ralph PJ, Kühl M (2012) In situ thermal dynamics of shallow water corals is affected by tidal patterns and irradiance. Mar Biol. doi: 10.1007/s00227-012-1968-8 Google Scholar
  46. Jones R (1997) Changes in zooxanthellar densities and chlorophyll concentrations in corals during and after a bleaching event. Mar Ecol Prog Ser 158:51–59. doi: 10.3354/meps158051 CrossRefGoogle Scholar
  47. Jones R, Hoegh-Guldberg O, Larkum A, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant, Cell Environ 21:1219–1230. doi: 10.1046/j.1365-3040.1998.00345.x CrossRefGoogle Scholar
  48. Kaniewska P, Magnusson SH, Anthony KRN, Reef R, Kühl M, Hoegh-Guldberg O (2011) Importance of macro- versus microstructure in modulating light levels inside coral colonies. J Phycol 47:846–860. doi: 10.1111/j.1529-8817.2011.01021.x CrossRefGoogle Scholar
  49. Kirk J (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  50. Krämer W, Caamaño-Ricken I, Richter C, Bischof K (2012) Dynamic regulation of photoprotection determines thermal tolerance of two phylotypes of Symbiodinium clade A at two photon flux densities. Photochem Photobiol 88:398–413. doi: 10.1111/j.1751-1097.2011.01048.x CrossRefGoogle Scholar
  51. Kühl M, Cohen Y, Dalsgaard T, Jørgensen BB, Revsbach NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172. doi: 10.3354/meps.117159 CrossRefGoogle Scholar
  52. Le Tissier MDA, Brown BE (1996) Dynamics of solar bleaching in the intertidal reef coral Goniastrea aspera at Ko Phuket, Thailand. Mar Ecol Prog Ser 136:235–244. doi: 10.3354/meps136235 CrossRefGoogle Scholar
  53. Lesser MP (2011) Coral bleaching: causes and mechanisms. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Netherlands, pp 405–419CrossRefGoogle Scholar
  54. Lesser M, Farrell J (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 24:367–377. doi: 10.1007/s00338-004-0392-z CrossRefGoogle Scholar
  55. Lesser M, Gorbunov M (2001) Diurnal and bathymetric changes in chlorophyll fluorescence yields of reef corals measured in situ with a fast repetition rate fluorometer. Mar Ecol Prog Ser 212:69–77. doi: 10.3354/meps212069 CrossRefGoogle Scholar
  56. Lesser M, Stochaj W, Tapley D, Shick J (1990) Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8:225–232. doi: 10.1007/BF00265015 CrossRefGoogle Scholar
  57. Ljung G, Box G (1978) On a measure of lack of fit in time series models. Biometrika 65:297–303. doi: 10.1093/biomet/65.2.297 CrossRefGoogle Scholar
  58. Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131. doi: 10.1046/j.1461-0248.2001.00203.x CrossRefGoogle Scholar
  59. Magalon H, Baudry E, Husté A, Adjeroud M, Veuille M (2006) High genetic diversity of the symbiotic dinoflagellates in the coral Pocillopora meandrina from the South Pacific. Mar Biol 148:913–922. doi: 10.1007/s00227-005-0133-z CrossRefGoogle Scholar
  60. Manning MM, Gates RD (2008) Diversity in populations of free-living Symbiodinium from a Caribbean and Pacific reef. Limnol Oceanogr 53:1853–1861CrossRefGoogle Scholar
  61. Marsh JA Jr (1970) Primary productivity of reef-building calcareous red algae. Ecology 51:255–263. doi: 10.2307/1933661 CrossRefGoogle Scholar
  62. Marshall P, Baird A (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163. doi: 10.1007/s003380000086 CrossRefGoogle Scholar
  63. McClanahan TR (2004) The relationship between bleaching and mortality of common corals. Mar Biol 144:1239–1245. doi: 10.1007/s00227-003-1271-9 CrossRefGoogle Scholar
  64. Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Ecosystems of the world, vol 25., Coral reefsElsevier, New York, pp 75–87Google Scholar
  65. Muscatine L, Porter J (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460. doi: 10.2307/1297526 CrossRefGoogle Scholar
  66. Nishiyama Y, Allakhverdiev S, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749CrossRefGoogle Scholar
  67. Niyogi K (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359. doi: 10.1146/annurev.arplant.50.1.333 CrossRefGoogle Scholar
  68. Pettay DT, Lajeunesse TC (2007) Microsatellites from clade B Symbiodinium spp. specialized for Caribbean corals in the genus Madracis. Mol Ecol Notes 7:1271–1274. doi: 10.1111/j.1471-8286.2007.01852.x CrossRefGoogle Scholar
  69. Pettay DT, Lajeunesse TC (2009) Microsatellite loci for assessing genetic diversity, dispersal and clonality of coral symbionts in ‘stress-tolerant’ clade D Symbiodinium. Molecular Ecology Resources 9:1022–1025. doi: 10.1111/j.1755-0998.2009.02561.x CrossRefGoogle Scholar
  70. Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497. doi: 10.1016/j.ympev.2010.03.040 CrossRefGoogle Scholar
  71. Ragni M, Airs R, Hennige S, Suggett D, Warner M, Geider R (2010) PSII photoinhibition and photorepair in Symbiodinium (Pyrrhophyta) differs between thermally tolerant and sensitive phylotypes. Mar Ecol Prog Ser 406:57–70. doi: 10.3354/meps08571 CrossRefGoogle Scholar
  72. Ralph PJ, Gademann R, Larkum A, Schreiber U (1999) In situ underwater measurements of photosynthetic activity of coral zooxanthellae and other reef-dwelling dinoflagellate endosymbionts. Mar Ecol Prog Ser 180:139–147. doi: 10.3354/meps180139 CrossRefGoogle Scholar
  73. Raven J (2011) The cost of photoinhibition. Physiol Plant 142:87–104. doi: 10.1111/j.1399-3054.2011.01465.x CrossRefGoogle Scholar
  74. Robison J, Warner M (2006) Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol 42:568–579. doi: 10.1111/j.1529-8817.2006.00232.x CrossRefGoogle Scholar
  75. Roth MS, Latz MI, Goericke R, Deheyn DD (2010) Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation. J Exp Biol 213:3644–3655. doi: 10.1242/jeb.040881 CrossRefGoogle Scholar
  76. Salih A, Larkum A, Cox G, Kühl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850–853CrossRefGoogle Scholar
  77. Schreiber U (2004) Pulse-amplitude-modulation (PAM) Fluorometry and saturation pulse method: an overview. In: Papageorgiou G, Govindjee (eds) Chlorophyll a fluorescence: A Signature of Photosynthesis. Springer, Dordrecht, The Netherlands, pp 279–319Google Scholar
  78. Six C, Finkel ZV, Irwin AJ, Campbell DA (2007) Light variability illuminates niche-partitioning among marine picocyanobacteria. PLoS ONE 2 doi: 10.1371/journal.pone.0001341
  79. Smith D, Suggett D, Baker N (2005) Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Global Change Biol 11:1–11. doi: 10.1111/j.1529-8817.2003.00895.x CrossRefGoogle Scholar
  80. Stimson J, Kinzie R III (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74. doi: 10.1016/S0022-0981(05)80006-1 CrossRefGoogle Scholar
  81. Stimson J, Sakai K, Sembali H (2002) Interspecific comparison of the symbiotic relationship in corals with high and low rates of bleaching-induced mortality. Coral Reefs 21:409–421. doi: 10.1007/s00338-002-0264-3 Google Scholar
  82. Takahashi S, Badger M (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60. doi: 10.1016/j.tplants.2010.10.001 CrossRefGoogle Scholar
  83. Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182. doi: 10.1016/j.tplants.2008.01.005 CrossRefGoogle Scholar
  84. Takahashi S, Nakamura T, Sakamizu M, van Woesik R, Yamasaki H (2004) Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol 45:251–255. doi: 10.1093/pcp/pch028 CrossRefGoogle Scholar
  85. Takahashi S, Whitney S, Badger M (2009) Different thermal sensitivity of the repair of photodamaged photosynthetic machinery in cultured Symbiodinium species. Proc Natl Acad Sci USA 106:3237–3242. doi: 10.1073/pnas.0808363106 CrossRefGoogle Scholar
  86. Tchernov D, Gorbunov M, de Vargas C, Narayan Yadav S, Milligan A, Haggblom M, Falkowski P (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535. doi: 10.1073/pnas.0402907101 CrossRefGoogle Scholar
  87. Tyystjärvi E, Aro EM (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci USA 93:2213–2218CrossRefGoogle Scholar
  88. Ulstrup K, Hill R, van Oppen M, Larkum A, Ralph P (2008) Seasonal variation in the photo-physiology of homogeneous and heterogeneous Symbiodinium consortia in two scleractinian corals. Mar Ecol Prog Ser 361:139–150. doi: 10.3354/meps07360 CrossRefGoogle Scholar
  89. Venn A, Wilson M, Trapido-Rosenthal H, Keely B, Douglas A (2006) The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant, Cell Environ 29:2133–2142CrossRefGoogle Scholar
  90. Wangpraseurt D, Larkum AW, Ralph PJ, Kühl M (2012) Light gradients and optical microniches in coral tissues. Front Microbiol 3:316. doi: 10.3389/fmicb.2012.00316 Google Scholar
  91. Warner M, Berry-Lowe S (2006) Differential xanthophyll cycling and photochemical activity in symbiotic dinoflagellates in multiple locations of three species of Caribbean coral. J Exp Mar Biol Ecol 339:86–95. doi: 10.1016/j.jembe.2006.07.011 CrossRefGoogle Scholar
  92. Warner ME, Fitt WK, Schmidt GW (1996) The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant, Cell Environ 19:291–299. doi: 10.1111/j.1365-3040.1996.tb00251.x CrossRefGoogle Scholar
  93. Warner M, Fitt W, Schmidt G (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012. doi: 10.1073/pnas.96.14.8007 CrossRefGoogle Scholar
  94. Wright S, Jeffrey S, Mantoura R, Llewellyn C, Bjoernland T, Repeta D, Welschmeyer N (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar Ecol Prog Ser 77:186–196. doi: 10.3354/meps077183 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wiebke E. Krämer
    • 1
    • 3
    Email author
  • Verena Schrameyer
    • 2
  • Ross Hill
    • 2
    • 4
  • Peter J. Ralph
    • 2
  • Kai Bischof
    • 1
  1. 1.Department of Marine BotanyUniversity of BremenBremenGermany
  2. 2.Plant Functional Biology and Climate Change Cluster, Department of Environmental SciencesUniversity of TechnologySydneyAustralia
  3. 3.Laboratorio de Fotobiología, Unidad Académica de Sistemas Arrecifales (Puerto Morelos), Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoCancúnMexico
  4. 4.Centre for Marine Bio-Innovation and Sydney Institute of Marine Science, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyAustralia

Personalised recommendations