Skip to main content

Advertisement

Log in

Modeling kelp forest distribution and biomass along temperate rocky coastlines

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

An Erratum to this article was published on 21 April 2013

Abstract

We address the global deficit of data describing kelp forest distribution, relative covers and biomass by testing the ability of species distribution models to predict these attributes at locations where data are currently limited. We integrated biological ground truth data with high-resolution environmental datasets to develop generalized additive models that accurately predict the structure of Laminaria forests within the Bay of Morlaix (48°42′42″N, 3°55′40″W). Forest distribution and proportional covers were predicted using water depth, light availability, wave exposure and sediment dynamics. The biomass of individual kelp species was modeled by supplementing these same variables with measures of seafloor slope and benthic position. Biomass predictions for Laminaria digitata and Laminaria hyperborea contrast the physiological tolerances of these species to light and wave exposure gradients. As a direct management output, we produced high-resolution maps (25 m2 grids) that closely match independent field data and provide vital information for marine spatial planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Airoldi L, Cinelli F (1997) Effects of sedimentation on subtidal macroalgal assemblages: an experimental study from a mediterranean rocky shore. J Exp Mar Biol Ecol 215:269–288

    Article  Google Scholar 

  • Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688. doi:10.1111/j.1365-2699.2006.01584.x

    Article  Google Scholar 

  • Arzel P (1998) Les laminaires sur les cotes bretonnes. Institut français de recherche pour l’exploitation de la mer, Plouzané, France

  • Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118

    Article  Google Scholar 

  • Austin MP, Van Niel KP (2011) Impact of landscape predictors on climate change modelling of species distributions: a case study with Eucalyptus fastigata in southern New South Wales, Australia. J Biogeogr 38:9–19. doi:10.1111/j.1365-2699.2010.02415.x

    Article  Google Scholar 

  • Bekkby T, Moy FE (2011) Developing spatial models of sugar kelp (Saccharina latissima) potential distribution under natural conditions and areas of its disappearance in Skagerrak. Estuar Coast Shelf Sci 95:477–483. doi:10.1016/j.ecss.2011.10.029

    Article  Google Scholar 

  • Bekkby T, Rinde E, Erikstad L, Bakkestuen V (2009) Spatial predictive distribution modelling of the kelp species Laminaria hyperborea. ICES J Mar Sci 66:2106–2115. doi:10.1093/icesjms/fsp195

    Article  Google Scholar 

  • Billot C, Engel CR, Rousvoal S, Kloareg B, Valero M (2003) Current patterns, habitat discontinuities and population genetic structure: the case of the kelp Laminaria digitata in the English Channel. Mar Ecol Prog Ser 253:111–121

    Article  Google Scholar 

  • Bolton JJ (2010) The biogeography of kelps (Laminariales, Phaeophyceae): a global analysis with new insights from recent advances in molecular phylogenetics. Helgol Mar Res 64:263–279. doi:10.1007/s10152-010-0211-6

    Article  Google Scholar 

  • Bonetti C, Populus J (2009) Predictive mapping of benthic marine habitats: logistic regression modeling applied to kelp forests in Brittany (France). Institut français de recherche pour l’exploitation de la mer, Plouzané

    Google Scholar 

  • Burrows MT (2012) Influences of wave fetch, tidal flow and ocean colour on subtidal rocky communities. Mar Ecol Prog Ser 445:193–207. doi:10.3354/meps09422

    Article  Google Scholar 

  • Bustamante J, Seoane J (2004) Predicting the distribution of four species of raptors (Aves:Accipitridae) in southern Spain: statistical models work better than existing maps. J Biogeogr 31:295–306. doi:10.1046/j.0305-0270.2003.01006.x

    Article  Google Scholar 

  • Castric-Fey A, Girard-Descatoire A, L’Hardy-Halos MT, Derrien-Courtel S (2001) La vie sous-marine en bretagne—découverte des fonds rocheux. Les Cahiers Naturalistes de Bretagne n°3, Conseil Régional de Bretagne, 176 p

  • Christie H, Jorgensen NM, Norderhaug KM, Waage-Nielsen E (2003) Species distribution and habitat exploitation of fauna associated with kelp (Laminaria hyperborea) along the Norwegian coast. J Mar Biol Assoc UK 83:687–699

    Article  Google Scholar 

  • Connell SD (2005) Assembly and maintenance of subtidal habitat heterogeneity: synergistic effects of light penetration and sedimentation. Mar Ecol Prog Ser 289:53–61

    Article  Google Scholar 

  • Connell SD (2007) Subtidal temperate rocky habitats: habitat heterogeneity at local to continental scales. In: Connell SD, Gillanders BM (eds) Marine ecology. Oxford University Press, Melbourne, pp 378–401

    Google Scholar 

  • Connell SD, Irving AD (2008) Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia. J Biogeogr 35:1608–1621

    Article  Google Scholar 

  • Connell SD, Russell BD, Turner DJ, Shepherd SA, Kildea T, Miller DJ, Airoldi L, Cheshire A (2008) Recovering a lost baseline: missing kelp forests on a metropolitan coast. Mar Ecol Prog Ser 360:63–72

    Article  Google Scholar 

  • Connor D, Allen J, Golding N, Howell K, Lieberknecht L, Northen K, Reker J (2004) The marine habitat classification for Britain and Ireland version 04.05. JNCC, Peterborough

  • Dayton PK, Tegner MJ, Edwards PB, Riser KL (1998) Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecol Appl 8:309–322

    Article  Google Scholar 

  • Derrien-Courtel S (2009) Fiche de synthése d’habitat ‘Laminarres’. Ifremer, Brest

    Google Scholar 

  • Drummond SP, Connell SD (2005) Quantifying percentage cover on subtidal organisms on rocky coasts: a comparison of the costs and benefits of standard methods. Mar Freshw Res 56:865–876

    Article  Google Scholar 

  • Ehrhold A, Hamon D, Guillaumont B (2006) The REBENT monitoring network, a spatially integrated, acoustic approach to surveying nearshore macrobenthic habitats: application to the Bay of Concarneau (South Brittany, France). ICES J Mar Sci 63:1604–1615. doi:10.1016/j.icesjms.2006.06.010

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49. doi:10.1017/s0376892997000088

    Article  Google Scholar 

  • Foley NS, van Rensburg TM, Armstrong CW (2010) The ecological and economic value of cold-water coral ecosystems. Ocean Coast Manag 53:313–326. doi:10.1016/j.ocecoaman.2010.04.009

    Article  Google Scholar 

  • Fowler-Walker MJ, Connell SD (2002) Opposing states of subtidal habitat across temperate Australia: consistency and predictability in kelp canopy-benthic associations. Mar Ecol Prog Ser 240:49–56

    Article  Google Scholar 

  • Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr 19:474–499

    Article  Google Scholar 

  • Franklin J (2009) Mapping species distributions spatial inference and prediction. Cambridge University Press, Cambridge

    Google Scholar 

  • Garrabou J, Ballesteros E, Zabala M (2002) Structure and dynamics of north-western Mediterranean rocky benthic communities along a depth gradient. Estuar Coast Shelf Sci 55:493–508. doi:10.1006/ecss.2001.0920

    Article  Google Scholar 

  • Garza-Perez JR, Lehmann A, Arias-Gonzalez JE (2004) Spatial prediction of coral reef habitats: integrating ecology with spatial modeling and remote sensing. Mar Ecol Prog Ser 269:141–152

    Article  Google Scholar 

  • Gaylord B, Blanchette CA, Denny MW (1994) Mechanical consequences of size in wave-swept algae. Ecol Monogr 64:287–313

    Article  Google Scholar 

  • Gohin F, Loyer S, Lunven M, Labry C, Froidefond JM, Delmas D, Huret M, Herbland A (2005) Satellite-derived parameters for biological modelling in coastal waters: illustration over the eastern continental shelf of the Bay of Biscay. Remote Sens Environ 95:29–46. doi:10.1016/j.rse.2004.11.007

    Article  Google Scholar 

  • Goldberg NA, Kendrick GA (2004) Effects of island groups, depth, and exposure to ocean waves on subtidal macroalgal assemblages in the Recherche Archipelago, Western Australia. J Phycol 40:631–641

    Article  Google Scholar 

  • Gorman D, Connell SD (2009) Recovering subtidal forests in human-dominated landscapes. J Appl Ecol 46:1258–1265. doi:10.1111/j.1365-2664.2009.01711.x

    Article  Google Scholar 

  • Gorman D, Russell BD, Connell SD (2009) Land-to-sea connectivity: linking human-derived terrestrial subsidies to subtidal habitat change on open rocky coasts. Ecol Appl 19:1114–1126

    Article  Google Scholar 

  • Gorman D, Mayfield S, Ward TM, Burch P (2011) Optimising harvest strategies in a multi-species bivalve fishery. Fish Manage Ecol 18:270–281. doi:10.1111/j.1365-2400.2010.00781.x

    Article  Google Scholar 

  • Graham MH (1997) Factors determining the upper limit of giant kelp, Macrocystis pyrifera Agardh, along the Monterey Peninsula, central California, USA. J Exp Mar Biol Ecol 218:127–149

    Article  Google Scholar 

  • Graham MH, Kinlan BP, Druehl LD, Garske LE, Banks S (2007) Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity. Proc Nat Acad Sci USA 104:16576–16580. doi:10.1073/pnas.0704778104

    Article  CAS  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi:10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Harder DL, Hurd CL, Speck T (2006) Comparison of mechanical properties of four large, wave-exposed seaweeds. Am J Bot 93:1426–1432

    Article  Google Scholar 

  • Holmes KW, Van Niel KP, Radford B, Kendrick GA, Grove SL (2008) Modelling distribution of marine benthos from hydroacoustics and underwater video. Cont Shelf Res 28:1800–1810. doi:10.1016/j.csr.2008.04.016

    Article  Google Scholar 

  • Hughes TP, Bellwood DR, Folke C, Steneck RS, Wilson J (2005) New paradigms for supporting the resilience of marine ecosystems. Trends Ecol Evol 20:380–386

    Article  Google Scholar 

  • Infantes E, Terrados J, Orfila A, Canellas B, Alvarez-Ellacuria A (2009) Wave energy and the upper depth limit distribution of Posidonia oceanica. Bot Mar 52:419–427. doi:10.1515/bot.2009.050

    Article  Google Scholar 

  • Johansson G, Snoeijs P (2002) Macroalgal photosynthetic responses to light in relation to thallus morphology and depth zonation. Mar Ecol Prog Ser 244:63–72

    Article  Google Scholar 

  • Johnston EL, Connell SD, Irving AD, Pile AJ, Gillanders BM (2007) Antarctic patterns of shallow subtidal habitat and inhabitants in Wilke’s Land. Polar Biol 30:781–788. doi:10.1007/s00300-006-0237-z

    Article  Google Scholar 

  • Joubin M (1909) Recherches sur la distribution océanographique des végétaux marins dan la région de Roscoff. Annales de L’institut Océanographique

  • Kain JM (1971) Synopsis of biological data on Laminaria hyperborea. FAO Fish Synop 87:1–68

    Google Scholar 

  • Kelly NM, Fonseca M, Whitfield P (2001) Predictive mapping for management and conservation of seagrass beds in North Carolina. Aquat Conserv Mar Freshw Ecosyst 11:437–451

    Article  Google Scholar 

  • Kennelly SJ (1987) Physical disturbances in an Australian kelp community. I. Temporal effects. Mar Ecol Prog Ser 40:145–153

    Article  Google Scholar 

  • Mann KH (1973) Seaweeds: their productivity and strategy for growth. Science 182:975–981

    Article  CAS  Google Scholar 

  • McArthur MA, Brooke BP, Przeslawski R, Ryan DA, Lucieer VL, Nichol S, McCallum AW, Mellin C, Cresswell ID, Radke LC (2010) On the use of abiotic surrogates to describe marine benthic biodiversity. Estuar Coast Shelf Sci 88:21–32. doi:10.1016/j.ecss.2010.03.003

    Article  Google Scholar 

  • Méléder V, Populus J, Guillaumont B, Perrot T, Mouquet P (2010) Predictive modelling of seabed habitats: case study of subtidal kelp forests on the coast of Brittany, France. Mar Biol 157:1525–1541. doi:10.1007/s00227-010-1426-4

    Article  Google Scholar 

  • Nogues-Bravo D, Araujo MB (2006) Species richness, area and climate correlates. Glob Ecol Biogeogr 15:452–460. doi:10.1111/j.1466-8238.2006.00240.x

    Google Scholar 

  • Norderhaug KM, Christie HC (2009) Sea urchin grazing and kelp re-vegetation in the NE Atlantic. Mar Biol Res 5:515–528. doi:10.1080/17451000902932985

    Article  Google Scholar 

  • Pedersen M, Nejrup L, Fredriksen S, Christie H, Norderhaug K (2012) Effects of wave exposure on population structure, demography, biomass and productivity of the kelp Laminaria hyperborea. Mar Ecol Prog Ser 451:45–60

    Article  Google Scholar 

  • Pehlke C, Bartsch I (2008) Changes in depth distribution and biomass of sublittoral seaweeds at Helgoland (North Sea) between 1970 and 2005. Clim Res 37:135–147. doi:10.3354/cr00767

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Reed DC, Foster MS (1984) The effects of canopy shading on algal recruitment and growth in a giant kelp forest. Ecology 65:937–948

    Article  Google Scholar 

  • Roberts JJ, Best BD, Dunn DC, Treml EA, Halpin PN (2010) Marine geospatial ecology tools: an integrated framework for ecological geoprocessing with ArcGIS, Python, R, MATLAB, and C plus. Environ Model Softw 25:1197–1207. doi:10.1016/j.envsoft.2010.03.029

    Article  Google Scholar 

  • Rodriguez JP, Brotons L, Bustamante J, Seoane J (2007) The application of predictive modelling of species distribution to biodiversity conservation. Divers Distrib 13:243–251. doi:10.1111/j.1472-4642.2007.00356.x

    Article  Google Scholar 

  • Roleda MY, Hanelt D, Wiencke C (2006) Growth and DNA damage in young Laminaria sporophytes exposed to ultraviolet radiation: implication for depth zonation of kelps on Helgoland (North Sea). Mar Biol 148:1201–1211. doi:10.1007/s00227-005-0169-0

    Article  CAS  Google Scholar 

  • Russell BD (2007) Effects of canopy-mediated abrasion and water flow on the early colonisation of turf-forming algae. Mar Freshw Res 58:657–665. doi:10.1071/mf06194

    Article  Google Scholar 

  • Saulquin B, Hamdi A, Populus J, Loutier R, Demaria J, Mangin A, Fanton d’Andon O (2011) Estimation of the diffuse attenuation coefficient KdPAR using MERIS satellite reflectances for European coastal waters. 5th Workshop on Remote Sensing of the Coastal Zone, Prague, Czech Republic

  • Schaal G, Riera P, Leroux C (2010) Trophic ecology in a Northern Brittany (Batz Island, France) kelp (Laminaria digitata) forest, as investigated through stable isotopes and chemical assays. J Sea Res 63:24–35. doi:10.1016/j.seares.2009.09.002

    Article  CAS  Google Scholar 

  • Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: visualizing classifier performance in R. Bioinformatics 21:3940–3941. doi:10.1093/bioinformatics/bti623

    Article  CAS  Google Scholar 

  • Sjotun K, Christie H, Fossa JH (2006) The combined effect of canopy shading and sea urchin grazing on recruitment in kelp forest (Laminaria hyperborea). Mar Biol Res 2:24–32. doi:10.1080/17451000500537418

    Article  Google Scholar 

  • Steneck RS, Graham MH, Bourget BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459

    Article  Google Scholar 

  • Steneck RS, Vavrinec J, Leland AV (2004) Accelerating trophic-level dysfunction in kelp forest ecosystems of the western North Atlantic. Ecosystems 7:323–332. doi:10.1007/s10021-004-0240-6

    Article  Google Scholar 

  • Tamburello L, Benedetti-Cecchi L, Ghedini G, Alestra T, Bulleri F (2012) Variation in the structure of subtidal landscapes in the NW Mediterranean Sea. Mar Ecol Prog Ser 457:29–41

    Article  Google Scholar 

  • Tugores MP, Giannoulaki M, Iglesias M, Bonanno A, Ticina V, Leonori I, Machias A, Tsagarakis K, Diaz N, Giraldez A, Patti B, De Felice A, Basilone G, Valavanis V (2011) Habitat suitability modelling for sardine Sardina pilchardus in a highly diverse ecosystem: the Mediterranean Sea. Mar Ecol Prog Ser 443:181–205. doi:10.3354/meps09366

    Article  Google Scholar 

  • Wernberg T, Connell SD (2008) Physical disturbance and subtidal habitat structure on open rocky coasts: effects of wave exposure, extent and intensity. J Sea Res 59:237–248. doi:10.1016/j.seares.2008.02.005

    Article  Google Scholar 

  • Wernberg T, Thomsen MS (2005) The effect of wave exposure on the morphology of Ecklonia radiata. Aquat Bot 83:61–70

    Article  Google Scholar 

  • Werner A, Kraan S (2004) Review of the potential mechanisation of kelp harvesting in Ireland. Irish Seaweed Centre, Martin Ryan Institute. National University of Ireland, Galway

  • Whittaker RH, Levin SA (1977) The role of mosaic phenomena in natural communities. Theor Popul Biol 12:117–139

    Article  CAS  Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Wood SN (2008) Fast stable direct fitting and smoothness selection for generalized additive models. J R Stat Soc Ser B Stat Methodol 70:495–518

    Article  Google Scholar 

  • Wood SN, Augustin NH (2002) GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol Model 157:157–177

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

This research was supported by funds from Agence des aires marines protégées and the Réseau Benthique network. The research outcomes have contributed toward the development of an ecological baseline for French Atlantic and English Channel Natura 2000 sites. The authors would like to thank the staff of the Service des Applications Géomatiques and in particular E. Giocomini, E. Autret and C. Carré for considerable support throughout the project. We acknowledge all data providers and those persons who helped us gain access to these resources. We also thank B.D. Russell, T.M. Ward and two anonymous reviewers for helpful comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Gorman.

Additional information

Communicated by S. Connell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorman, D., Bajjouk, T., Populus, J. et al. Modeling kelp forest distribution and biomass along temperate rocky coastlines. Mar Biol 160, 309–325 (2013). https://doi.org/10.1007/s00227-012-2089-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2089-0

Keywords

Navigation