Skip to main content
Log in

Reproduction in the externally brooding sea anemone Epiactis georgiana in the Antarctic Peninsula and the Weddell Sea

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

External parental care is uncommon among actiniarians but common in Epiactis species. Here, several aspects of reproduction are analyzed for of one of them, Epiactis georgiana. Samples were collected in December, January, February, March, and April in the Antarctic Peninsula and the eastern Weddell Sea, during 1998, 2000, 2002, and 2003. Most sexually mature individuals of E. georgiana are male or female, but some are hermaphrodites. This is the first report of hermaphroditism in E. georgiana, which is the third species of the genus with this sexual pattern. The results suggest that oogenesis starts in December and that at least two generations of oocytes overlap; a third generation is often brooded externally. Putative fertilization is likely internal, and larvae and/or embryos are externally brooded on the distal part of the adult column until an advanced developmental stage. Apparently E. georgiana reproduces seasonally, probably releasing the embryos/larvae in the last months of the austral spring (December). Inter-individual variability was observed in gametogenesis. In addition, specimens from the Antarctic Peninsula were larger than those from the Weddell Sea. This study represents the first step in understanding the reproductive mode of E. georgiana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arntz WE, Brey T (2001) The expedition ANTARKTIS XVII/3 (EASIZ III) of RV “Polarstern” to the eastern Weddell Sea in 2000 (eds). Ber Polar Meeresforsch 402:1–181

    Google Scholar 

  • Arntz WE, Brey T (2003) The expedition ANTARKTIS XIX/5 (LAMPOS) of the R/V “Polarstern” in 2002 (eds). Ber Polar Meeresforsch 462:1–120

    Google Scholar 

  • Arntz WE, Brey T (2005) The expedition ANTARKTIS XXI/2 (BENDEX) on RV ‘‘Polarstern’’ in 2003/2004 (eds). Ber Polar Meeresforsch 503:1–149

    Google Scholar 

  • Arntz WE, Gutt J (1999) The expedition ANTARKTIS XV/3 (EASIZ II) of RV “Polarstern” to the eastern Weddell Sea in 1998 (eds). Ber Polarforsch 301:1–229

    Google Scholar 

  • Arntz WE, Brey T, Gerdes D, Gorny M, Gutt J, Hain S, Klages M (1992) Patterns of life history and population dynamics of benthic invertebrates under the high Antarctic conditions of the Weddell Sea. In: Colombo G, Ferrari I, Ceccherelli VU, Rossi R (eds) Marine eutrophication and population dynamics. Proceedings of 25th EMB symposium, Ferrara, Italy, vol 370, pp 221–230

  • Arntz WE, Brey T, Gallardo V (1994) Antarctic zoobenthos. Oceanogr Mar Biol Ann Rev 32:241–304

    Google Scholar 

  • Barnes DKA, Clarke A (1998) The ecology of an assemblage dominant: the encrusting bryozoan Fenestrulina rugula. Invertebr Biol 117:331–340

    Article  Google Scholar 

  • Barthel D, Gutt J (1992) Sponge association in the eastern Weddell Sea. Ant Sci 4:137–150

    Article  Google Scholar 

  • Black R, Johnson MS (1979) Asexual viviparity and population genetics of Actinia tenebrosa. Mar Biol 53:27–31

    Article  Google Scholar 

  • Brey T, Haine S (1992) Growth, reproduction and production of Lissarca notorcadensis (Bivalvia: Philobryidae) in the Weddell Sea, Antarctica. Mar Ecol Prog Ser 82:219–226

    Article  Google Scholar 

  • Brito TAS, Tyler PA, Clarke A (1997) Reproductive biology of the Antarctic octocoral Thouarella variabilis Wright and Studer, 1889. In: Proceedings of 6th International Conference on Coelent, pp 63–69

  • Bronsdon SK, Tyler PA, Gage JD, Rice AL (1993) Reproductive biology of two epizoic anemones from the deep north-eastern Atlantic ocean. J Mar Biol Ass UK 73:531–542

    Article  Google Scholar 

  • Bucklin A, Hedgecock D, Hand C (1984) Genetic evidence of self-fertilization in the sea anemone Epiactis prolifera. Mar Biol 84:175–182

    Article  Google Scholar 

  • Carlgren O (1927) Actiniaria and Zoantharia. In: Odhner T (ed). Further Zool Res Swed Ant Exp 1901–1903 2(3):1–102

  • Carlgren O (1949) A survey of the Ptychodactiaria, Corallimorpharia and Actiniaria. K Svenska Vetenskaps-Akad Handl Ser 4(1):1–121

  • Carter MA, Funnell F (1980) Reproduction and brooding in Actinia. In: Tardent P, Tardent R (eds) Development and cellular biology of coelenterates. Elsevier North Holland Inc, New York, pp 17–23

    Google Scholar 

  • Chantiore M, Cattaneo-Vietti R, Elia L, Guidetti M, Antonini M (2002) Reproduction and condition of the scallop Adamussium colbecki (Smith 1902), the sea-urchin Sterechius neumayeri (Meissner 1900) and the sea-star Odontaster validus (Koehler 1911). Polar Biol 25:251–255

    Google Scholar 

  • Chapelle G, Peck LS (1999) Polar gigantism dictated by oxygen availability. Nature 399:114–115

    Article  CAS  Google Scholar 

  • Chapelle G, Peck LS (2004) Amphipod crustacean size spectra: new insights in the relationship between size and oxygen. Oikos 106:167–175. doi:10.1111/j.0030-1299.2004.12934.x

    Article  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Chen C, Soong K, Chen CA (2008) The smallest oocytes among broadcast-spawning actiniarians and a unique lunar reproductive cycle in a unisexual population of the sea anemone, Aiptasia pulchella (Anthozoa: Actiniaria). Zool Stud 47:37–45

    Google Scholar 

  • Chia FS (1976) Sea anemone reproduction: patterns and adaptative radiations. In: Mackie GO (ed) Coelenterate ecology and behaviour. Plenum Press, New York, pp 261–270

    Google Scholar 

  • Clark AB (1978) Sex ratio and local resource competition in a prosimian primate. Science 201:163–165

    Article  CAS  Google Scholar 

  • Coma R, Lasker HR (1997) Effects of spatial distribution and reproductive biology on in situ fertilisation rates of a broadcast-spawning invertebrate. Biol Bull 193:20–29

    Article  Google Scholar 

  • Dayton PK (1990) Polar benthos. In: Smith WO (ed) Polar oceanography. Part B. Chemistry, biology and geology. Academic Press, San Diego, pp 631–685

    Google Scholar 

  • Dunn DF (1975a) Reproduction of the externally brooding sea anemone Epiactis prolifera Verrill, 1869. Biol Bull 148:199–218

    Article  CAS  Google Scholar 

  • Dunn DF (1975b) Gynodioecy in an animal. Nature Lond 253:528–529

    Article  CAS  Google Scholar 

  • Dunn DG (1983) Some Antarctic and sub-Antarctic sea anemones (Coelenterata: Ptychodactiaria and Actiniaria). Ant Res Ser 39:1–67

    Article  Google Scholar 

  • Edmands S (1995) Mating systems in the sea anemone genus Epiactis. Mar Biol 123:723–733

    Article  Google Scholar 

  • Edmands S (1996) The evolution of mating systems in a group of brooding sea anemones (Epiactis). Invertebr Reprod Dev 30:227–237

    Article  Google Scholar 

  • Edmands S, Potts DC (1997) Population genetic structure in brooding sea anemones (Epiactis spp.) with contrasting reproductive modes. Mar Biol 127:485–498

    Article  Google Scholar 

  • Fautin DG (1984) More Antarctic and Subantarctic sea anemones (Coelenterata: Corallimorpharia and Actiniaria). Ant Res Ser 41:1–42

    Article  Google Scholar 

  • Fautin DG (1991) Developmental pathways of anthozoans. Hydrobiologia 216(217):143–149

    Article  Google Scholar 

  • Fautin DG (1997) Cnidarian reproduction: assumptions and their implications. In: Hartog den JC (ed) Coelenterate biology. Proceedings of 6th International Conference on Coelent, Leiden, pp 151–162

  • Fautin DG (2002) Reproduction of Cnidaria. Can J Zool 80:1735–1754

    Article  Google Scholar 

  • Fautin DG, Chia FS (1986) Revision of sea anemone genus Epiactis (Coelenterata: Actiniaria) on the Pacific coast of North America, with descriptions of two new brooding species. Can J Zool 64:1665–1674

    Article  Google Scholar 

  • Fautin DG, Spaulding JG, Chia FS (1989) Cnidaria (chapter 2). In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, 4A: fertilization, development, and parental care. Oxford and IBH Publishing Company, New Delhi, pp 43–62

    Google Scholar 

  • Fütterer DK, Brandt A, Poore GCB (2003) The expeditions Antarktis-XIX/3 and XIX/4 of the Research Vessel POLARSTERN in 2002 (ANDEEP I and II: Antarctic Benthic deep-sea biodiversity: colonisation history and recent community patterns) (eds). Ber Polar Meeresforsch 470:1–174

    Google Scholar 

  • Gabe M (1968) Technique histologique. Massou et Cie, Paris

    Google Scholar 

  • Gage JD, Tyler PA (1991) Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press, London

    Book  Google Scholar 

  • Galley EA, Tyler PA, Smith CR, Clarke A (2008) Reproductive biology of two species of holothurian from the deep-sea order Elasipoda, on the Antarctic continental shelf. Deep-Sea Res II 55:2515–2526

    Article  Google Scholar 

  • Ghiselin M (1969) The evolution of hermaphroditism among animals. Q Rev Biol 44:189–208

    Article  CAS  Google Scholar 

  • Ghiselin M (1974) The economy of nature and the evolution of sex. University of California Press, Berkeley

    Google Scholar 

  • Gorny M, Brey T, Arntz WE, Bruns T (1993) Growth, development and productivity of Chorismus antarcticus (Pfeffer) (Crustacea: Decapoda: Natantia) in the eastern Weddell Sea, Antarctica. J Exp Mar Biol Ecol 174:261–275

    Article  Google Scholar 

  • Gutt J, Gerdes D, Klages M (1992) Seasonality and spatial variability in the reproduction of two Antarctic holothurians (Echinodermata). Polar Biol 11:533–544

    Article  Google Scholar 

  • Hand C, Uhlinger K (1992) Culture, sexual and asexual reproduction, and growth of the sea anemone Nematostella vectensis. Biol Bull 182:169–176

    Article  Google Scholar 

  • Jennison BL (1981) Reproduction in three species of sea anemones from Key West, Florida. Can J Zool 59:1708–1719

    Article  Google Scholar 

  • Johansen DA (1940) Plant microtechniques. McGraw-Hill, New York

    Google Scholar 

  • Kang DH, Ahn IY, Choi KS (2009) The annual reproductive pattern of the Antarctic clam Laternula elliptica from Marian Cove, King George Island. Polar Biol 32:517–528. doi:10.1007/s00300-008-0544-7

    Article  Google Scholar 

  • Kruskal JB, Wish M (1978) Multidimensional scaling. Sage Publications, Beverly Hills

    Google Scholar 

  • Levitan DR (1991) Influence of body size and population density on fertilization success and reproductive output in a freespawning invertebrate. Biol Bull 181:261–268

    Article  Google Scholar 

  • Lin MD, Chen CA, Fang LS (2001) Distribution and sexual reproduction of a seagrass-bed-inhabiting Actiniarian, Phymanthus strandesi (Cnidaria: Anthozoa: Actiniaria: Phymantidae), at Hsiao-Liuchiu Island, Taiwan. Zool Stud 40:254–261

    Google Scholar 

  • Linse K, Barnes KA, Enderlein P (2006) Body size and growth of benthic invertebrates along an Antarctic latitudinal gradient. Deep-Sea Res II 53:921–931

    Article  Google Scholar 

  • Luxmoore RA (1982) The reproductive biology of some serolid isopods from the Antarctic. Polar Biol 1:3–11

    Article  Google Scholar 

  • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Statist 18:50–60

    Article  Google Scholar 

  • Mercier A, Hamel JF (2009) Reproductive periodicity and host-specific settlement and growth of a deep-water symbiotic sea anemone. Can J Zool 87:967–980

    Article  CAS  Google Scholar 

  • Olabarria C, Thurston MH (2003) Latitudinal and bathymetric trends in body size of the deep-sea gastropod Troschelia berniciensis (King). Mar Biol 143:723–730. doi:10.1007/s00227-003-1116-6

    Article  Google Scholar 

  • Orejas C, Gili JM, López-González PJ, Arntz WE (2001) Feeding strategies and diet composition of four species of Antarctic benthic cnidarians. Polar Biol 24:473–485

    Article  Google Scholar 

  • Orejas C, López-González PJ, Gili JM, Teixidó N, Gutt J, Arntz WE (2002) Distribution and reproductive ecology of the Antarctic octocoral Ainigmaptilon antarcticum in the Weddell Sea. Mar Ecol Progr Ser 250:105–116

    Article  Google Scholar 

  • Orejas C, Gili JM, López-González PJ, Hasemann C, Arntz WE (2007) Reproduction patterns of four Antarctic octocorals in the Weddell Sea: an inter-specific, shape, and latitudinal comparison. Mar Biol 150:551–563. doi:10.1007/s00227-006-0370-9

    Article  Google Scholar 

  • Orr J, Thorpe JP, Carter MA (1982) Biochemical genetic confirmation of the asexual reproduction of brooded offspring in the sea anemone Actinia equina. Mar Ecol Prog Ser 7:227–229

    Article  Google Scholar 

  • Pearse JS, Richard Mooi R, Lockhart SJ, Brandt A (2009) Brooding and species diversity in the Southern Ocean: selection for brooders or speciation within brooding clades? In: Krupnik I, Lang MA, Miller SE (eds) Smithsonian at the Poles: Contributions to International Polar Year Science. Proceedings of Smithsonian at the Poles Symposium, Smithsonian Institution, Washington, DC, 3–4 May 2007. Smithsonian Institution Scholarly Press, Washington, DC, pp 181–196

    Google Scholar 

  • Peck LS, Robinson K (1994) Pelagic larval development in the brooding brachiopod Liothyrella uva. Mar Biol 120:279–286

    Article  Google Scholar 

  • Piepenburg D, Schmid MK, Gerdes D (2002) The benthos off King George Island (South Shetland Islands, Antarctica): further evidence for a lack of a latitudinal biomass cline in the Southern Ocean. Polar Biol 25:146–158

    Google Scholar 

  • Poulin E, Féral JP (1996) Why are there so many species of brooding Antarctic echinoids? Evolution 50:820–830

    Article  Google Scholar 

  • Riemann-Zürneck K (1975) Actiniaria des Südwestatlantik II. Sagartiidae und Metridiidae. Helgol Wiss Meeres 27:70–95

    Article  Google Scholar 

  • Riemann-Zürneck K (1978) Actiniaria des Südwestatlantik. IV. Actinostola crassicornis (Hertwig, 1882) mit einer Diskussion verwandter Arten. Veröff Inst Meeresforsch Brem 17:65–85

    Google Scholar 

  • Rodríguez E, López-González PJ, Gili JM (2007) Biogeography of Antarctic sea anemones (Anthozoa, Actinairia): what do they tell us about the origin of the Antarctic benthic fauna? Deep-Sea Res II 54(16–17):1876–1904

    Article  Google Scholar 

  • Sherman CDH, Ayre DJ (2008) Fine-scale adaptation in a clonal sea anemone. Evolution 62:1373–1380

    Article  Google Scholar 

  • Sherman CDH, Peucker AJ, Ayre DJ (2007) Do reproductive tactics vary with habitat heterogeneity in the intertidal sea anemone Actinia tenebrosa? J Exp Mar Biol Ecol 340:259–267

    Article  Google Scholar 

  • Shick JM (1991) A functional biology of sea anemones. In: Calow P (ed) Functional biology series. Chapman & Hall, London

    Chapter  Google Scholar 

  • Smith CR, Mincks SL, DeMaster DJ (2006) A synthesis of benthopelagic coupling on the Antarctic Shelf: food banks, ecosystem inertia and global climate change. Deep-Sea Res II 53:875894

    Google Scholar 

  • Stephenson TA (1928) The British sea anemones. I. The Ray Society, London, p 148

    Google Scholar 

  • Strathmann RR, Strathmann MF (1982) The relationship between adult size and brooding in marine invertebrates. Am Nat 119:91–101

    Article  Google Scholar 

  • Strathmann RR, Strathmann MF, Emson RH (1984) Does limited brood capacity link adult size, brooding and simultaneous hermaphroditism? A test with the starfish Asterina phylactica. Am Nat 123:796–818

    Article  Google Scholar 

  • Strathmann RR, Lindsay RK, Marsh AG (2006) Embryonic and larval development of a cold adapted Antarctic ascidian. Polar Biol 29:495–501

    Article  Google Scholar 

  • Uchida T, Yamada M (1968) Cnidaria. In: Kume M, Dan K (eds) Invertebrate embryology. NOLIT Publishing House, Belgrade, pp 86–116

    Google Scholar 

  • Van Praët M (1990) Gametogenesis and the reproductive cycle in the deep-sea anemone Paracalliactis stephensoni (Cnidaria: Actiniara). J Mar Biol Ass UK 70:163–172

    Article  Google Scholar 

  • Van Praët M, Rice AL, Thurston MH (1990) Reproduction in two deep-sea anemones (Actiniaria); Phelliactis hertwigi and P. robusta. Prog Oceanogr 24:207–222

    Article  Google Scholar 

  • Waller RG (2005) Deep water scleractinians: current knowledge of reproductive processes. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Heidelberg, pp 691–700

    Chapter  Google Scholar 

  • Waller RG, Tyler PA (2011) Reproductive patterns in two deep-water solitary corals from the North-east Atlantic—Flabellum alabastrum and F. angulare (Cnidaria: Anthozoa: Scleractinia). J Mar Biol Assoc UK 91:669–675

    Article  Google Scholar 

  • Waller RG, Tyler PA, Smith CR (2008) Fecundity and embryo development of three Antarctic deep-water scleractinians: Flabellum thouarsii, F. curvatum and F. impensum. Deep-Sea Res II 55:2527–2534

    Article  Google Scholar 

  • Watling L, France SC, Pante E, Simpson A (2011) Biology of deep-water octocorals. Adv Mar Biol 60:41–122

    Article  Google Scholar 

  • Wedi SE, Fautin Dunn D (1983) Gametogenesis and reproductive periodicity of the subtidal sea anemone Urticina lofotensis (Coelenterata: Actiniaria) in California. Biol Bull 165:458–472

    Article  Google Scholar 

  • Woods HA, Moran AL, Arango CP, Mullen L, Shields C (2009) Oxygen hypothesis of polar gigantism not supported by performance of Antarctic pycnogonids in hypoxia. Proc R Soc B 276:1069–1075. doi:10.1098/rspb.2008.1489

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks are addressed to Prof. Dr. Wolf Arntz (Alfred-Wegener-Institute, Bremerhaven, Germany) who made possible our participation in several Antarctic projects and cruises. We extend our acknowledgements to the officers and crew of the R/V Polarstern and many colleagues on board during the EASIZ, ANDEEP, and BENDEX cruises for their valuable assistance. Thanks to M. Conradi (Universidad de Sevilla) who collected a considerable amount of the material analyzed in this manuscript. Comments from M. Daly, D. Fautin, and an anonymous reviewer substantially improved this manuscript. Support was provided by a MCT-CSIC grant (I3P-BPD2001-1) to E. Rodríguez and Spanish CICYT projects: ANT97-1533-E, ANT98-1739-E, ANT99-1608-E, REN2001-4269-E/ANT, REN2003-04236, and CGL2004-20141-E. This is a contribution to the SCAR program, Ecology of the Antarctic Sea Ice Zone (EASIZ) and ANDEEP contribution 159.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Rodríguez.

Additional information

Communicated by J. P. Grassle.

E. Rodríguez and C. Orejas have equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

227_2012_2063_MOESM1_ESM.pdf

EMS 1 Data of specimens used in histological study. N is number of individuals studied. AP, Antarctic Peninsula; F, females; HP, Hermaphrodites; M, males; WS, Weddell Sea (PDF 84 kb)

227_2012_2063_MOESM2_ESM.tif

EMS 2 Epiactis georgiana, histological sections of spermatogenesis; a male gametes recognizable once grouped in cysts with 24–28 spermatogonia (E1), each covered by mesoglea, b spermatocytes visible after reaching a diameter of 5 µm in center of spermatogonia (E2), c spermatid (to 2 µm of diameter) in center of spermatic cyst, d at the end of spermatogenesis, spermatozoids (1 µm in diameter) visible in mature follicles (E3) filling center of cysts with tails converging to mesentery edge. Abbreviations: ga, gastrodermis; ms, mesoglea; sc, spermatocytes; sg, spermatogonia; sp, spermatic cyst; st, spermatid; sz, spermatozoids; t: spermatozoid tail. Scale bars: A, B, 50 µm; C, D, 0.1 mm (TIFF 58479 kb)

227_2012_2063_MOESM3_ESM.tif

EMS 3 Average measurements (± SD) of pedal disk size (mm), column height (mm) (right axis), and number of mesenteries (left axis) of female (F) and male (M) specimens in each pooled area (AP, Antarctic Peninsula; WS, Weddell Sea). N, number of individuals measured (TIFF 5983 kb)

227_2012_2063_MOESM4_ESM.pdf

EMS 4 Minimum and maximum values of range of diameter (µm) for oocytes and spermatic cysts for each month in each pooled area. Average diameter is expressed as mean (\( \bar{\rm X} \)) ± standard deviation (SD) for each oocyte category (previtellogenic, early vitellogenic, late vitellogenic, and early embryos/larvae) and spermatic cyst state defined (E1, E2, E3) in each studied month. N = number of female individuals; AP, Antarctic Peninsula; WS, Weddell Sea (PDF 96 kb)

227_2012_2063_MOESM5_ESM.tiff

EMS 5 Proportion (%) of different oocyte maturity stages, embryos/larvae, and juveniles in studied months and pooled areas. AP, Antarctic Peninsula; WS, Weddell Sea (TIFF 2022 kb)

227_2012_2063_MOESM6_ESM.tif

EMS 6 Example of observed variability in oocyte and spermatic cyst size frequency distribution among individuals in December and February between areas of study. AP, Antarctic Peninsula; WS, Weddell Sea (TIFF 15338 kb)

227_2012_2063_MOESM7_ESM.tif

EMS 7 Epiactis georgiana brooding specimens and juveniles; a, oral view of preserved female with embryos and/or larvae free in gastrovascular cavity (arrows), b preserved brooding female, c, detail of brooded juveniles. Scale bars: A, 10 mm; B, 50 mm; C, 20 mm (TIFF 28804 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, E., Orejas, C., López-González, P.J. et al. Reproduction in the externally brooding sea anemone Epiactis georgiana in the Antarctic Peninsula and the Weddell Sea. Mar Biol 160, 67–80 (2013). https://doi.org/10.1007/s00227-012-2063-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2063-x

Keywords

Navigation