Skip to main content

Advertisement

Log in

Ocean acidification reduces biomineralization-related gene expression in the sea urchin, Hemicentrotus pulcherrimus

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Although recent studies have demonstrated that calcification in a wide range of marine organisms is profoundly affected by CO2-induced ocean acidification, the mechanism of this phenomenon is still unclear. To clarify the effects of ocean acidification on the calcification process at the molecular level, we evaluated the expression of three biomineralization-related genes in the sea urchin Hemicentrotus pulcherrimus exposed under control, 1,000, and 2,000 ppm CO2 from egg to pluteus larval stage. We found that the expression of the gene msp130, which is proposed to transport Ca2+ to the calcification site, is suppressed by increased CO2 at pluteus larval stage. Meanwhile, expression of the spicule protein matrix genes SM30 and SM50 was apparently not affected. The results suggest that the combined effects of ocean acidification on the expression of skeletogenesis-related genes as well as the change in seawater carbonate chemistry affect the biomineralization ability of sea urchins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agatsuma Y (2007) Ecology of Hemicentrotus pulcherrimus, Pseudocentrotus depressus, and Anthocidaris crassispina. In: Lawrence JM (ed) Edible sea urchins: biology and ecology, pp 459–472

  • Akasaka K, Frudakis TN, Killian CE, George NC, Yamasu K, Khaner O, Wilt FH (1994) Genomic organization of a gene encoding the spicule matrix protein SM30 in the sea urchin Strongylocentrotus purpuratus. J Biol Chem 269:20592–20598

    CAS  Google Scholar 

  • Beniash E, Aizenberg J, Addadi L, Weiner S (1997) Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc R Soc Lond [Biol] 264:461–465

    Article  CAS  Google Scholar 

  • Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol Annu Rev 49:1–42

    Google Scholar 

  • Byrne M (2012) Global change ecotoxicology: identification of early life history bottlenecks in marine invertebrates, variable species responses and variable experimental approaches. Mar Environ Res 76:3–15

    Article  CAS  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  CAS  Google Scholar 

  • Clark D, Lamare M, Barker M (2009) Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species. Mar Biol 156:1125–1137

    Article  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Emlet RB (1982) Echinoderm calcite: a mechanical analysis from larval spicules. Biol Bull 163:264–275

    Article  Google Scholar 

  • Fabry V, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    Article  CAS  Google Scholar 

  • Farach-Carson MC, Carson DD, Collier JL, Lennarz WJ, Park HR, Wright GC (1989) A calcium-binding, asparagines-linked oligosaccharide is involved in skeleton formation in the sea urchin embryo. J Cell Biol 109:1289–1299

    Article  CAS  Google Scholar 

  • Fuchikami T, Mitsunaga-Nakatsubo K, Amemiya S, Hosomi T, Watanabe T, Kurokawa D, Kataoka M, Harada Y, Satoh N, Kusunoki S, Takata K, Shimotori T, Yamamoto T, Sakamoto N, Shimada H, Akasaka K (2002) T-brain homologue (HpTb) is involved in the archenteron induction signals of micromere descendant cells in the sea urchin embryo. Development 129:5205–5216

    CAS  Google Scholar 

  • Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Change 18:37–46

    Article  Google Scholar 

  • Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    CAS  Google Scholar 

  • Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, Heip CHR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Let 34:L07603. doi:10.1029/2006GL028554

    Article  Google Scholar 

  • Guss K, Ettenson CA (1997) Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues. Development 124:1899–1908

    CAS  Google Scholar 

  • Hofmann GE, O’Donnell MJ, Todgham AE (2008) Using functional genomics to explore the effects of ocean acidification on calcifying marine organisms. Mar Ecol Prog Ser 373:219–225

    Article  CAS  Google Scholar 

  • Hofmann GE, Barry JB, Edmunds PJ, Gates RD, Hutchins DA, Klinger T, Sewell MA (2010) The effects of ocean acidification on calcifying organisms in marine ecosystems: an organism to ecosystem perspective. Annu Rev Ecol Evol Syst 41:127–147

    Article  Google Scholar 

  • Iglesias-Rodrigues MD, Halloran PR, Riskaby REM, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DRH, Tyrrell T, Gibbs SJ, von Dassaw P et al (2008) Phytoplankton calcification in a high-CO2 world. Science 320:336–340

    Article  Google Scholar 

  • IPCC 2007 (2007) The physical science basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jury CP, Whitehead RF, Szmant AM (2010) Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (=Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. Glob Change Biol 16:1632–1644

    Article  Google Scholar 

  • Katoh-Fukui Y, Noce T, Ueda T, Fujiwara Y, Hashimoto N, Higashinakagawa T, Killian CE, Livingston BT, Wilt FH, Benson SC, Sucov HM, Davidson EH (1991) The corrected structure of the SM50 spicule matrix protein of Strongylocentrotus purpuratus. Dev Biol 145:201–202

    Article  CAS  Google Scholar 

  • Killian C, Croker L, Wilt FH (2010) SpSM30 gene family expression patterns in embryonic and adult biomineralized tissues of the sea urchin, Strongylocentrotus purpuratus. Gene Exp Patterns 10:135–139

    Article  CAS  Google Scholar 

  • Kitajima T, Urakami H (2000) Differential distribution of spicule matrix proteins in the sea urchin embryo skeleton. Dev Growth Differ 42:295–306

    Article  CAS  Google Scholar 

  • Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research, report of a workshop held 18–20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and the U.S. Geological Survey. http://www.isse.ucar.edu/florida/report/Ocean_acidification_res_guide_compressed.pdf

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434

    Article  Google Scholar 

  • Kurihara H, Shirayama Y (2004) Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol Prog Ser 274:161–169

    Article  Google Scholar 

  • Leaf DS, Anstrom JA, Chin JE, Harkey MA, Showman RM, Raff RA (1987) Antibodies to a fusion protein identify a cDNA clone encoding msp130, a primary mesenchyme-specific cell surface protein of the sea urchin embryo. Dev Biol 121:29–40

    Article  CAS  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge

  • Livingston BT, Killian CE, Wilt F, Cameron AC, Landrum MJ, Ermolaeva O, Sapojnikov V, Maglott DR, Buchanan AM, Ettensohn CA (2006) A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Dev Biol 300:335–348

    Article  CAS  Google Scholar 

  • Martin S, Richier S, Pedrotti M-L, Duppont S, Castejon C, Gerakis Y, Kerros M-E, Oberhänsli F, Teyssié J-L, Jeffree R, Gattuso J-P (2011) Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. J Exp Biol 214:1357–1368

    Article  CAS  Google Scholar 

  • Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331

    Article  CAS  Google Scholar 

  • O’Donnell MJ, Todgham AE, Sewell MA, Hammmond LM, Ruggiero K, Fangue NA, Zippay ML, Hofmann GE (2010) Ocean acidification alters skeletonesis and gene expression in larval sea urchins. Mar Ecol Prog Ser 398:157–171

    Article  Google Scholar 

  • Okazaki K (1975) Spicule formation by isolated micromeres of the sea urchin embryo. Am Zool 15:567–581

    Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  Google Scholar 

  • Peled-Karmar M, Hamilton P, Wilt FH (2002) Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule. Exp Cell Res 272:56–61

    Article  Google Scholar 

  • Pennington JT, Emlet RB (1986) Ontogenatic and diel vertical migration of a planktonic echinoid larva, Dendraster excentricus (Eschscholtz): occurrence, causes, and probable consequences. J Exp Mar Biol Ecol 104:69–95

    Article  Google Scholar 

  • Pörtner H-O (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217

    Article  Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Article  CAS  Google Scholar 

  • Ries JB, Cohen AL, McCorkie DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134

    Article  CAS  Google Scholar 

  • Rodolfo-Metalpa R, Martin S, Ferrier-Pagès C, Gattuso J-P (2010) Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7:289–300

    Article  CAS  Google Scholar 

  • Sheppard Brennand H, Soars N, Dworjanyn SA, Davis AR, Byrne M (2010) Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS ONE 5:e11372. doi:10.1371/journal.pone.0011372

    Article  Google Scholar 

  • Stumpp M, Dupont S, Thorndyke MC, Melzner F (2011) CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae. Comp Biochem Physiol A 160:320–330

    Article  CAS  Google Scholar 

  • Todgham AE, Hofmann GE (2009) Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J Exp Biol 212:2579–2594

    Article  CAS  Google Scholar 

  • Widdicombe S, Spicer JI (2008) Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? J Exp Mar Biol Ecol 366:187–197

    Article  Google Scholar 

  • Wilt FH (2002) Biomineralization of spicules of sea urchin embryos. Zool Sci 19:253–261

    Article  CAS  Google Scholar 

  • Wilt FH, Killian CE, Livingston BT (2003) Development of calcareous skeletal elements in invertebrates. Development 71:237–250

    CAS  Google Scholar 

  • Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. Proc R Soc B. doi:10.1098/rspb.2008.0343

    Google Scholar 

  • Yamazaki A, Kawabata R, Shiomi K, Amemiya S, Sawaguchi M, Mitsunaga-Nakatsubo K, Yamaguchi M (2005) The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo. Dev Genes Evol 215:450–459

    Article  CAS  Google Scholar 

  • Zippay M, Hofmann G (2010) Effct of pH on gene expression and thermal tolerance of early life history stages of red abalone (Haliotis rufescens). J Shellfish Res 29:429–439

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. James Davis Reimer for revising English of the manuscript. This study was partially supported by a grant from Japan Society for the Promotion of Science (#20710008) and by the Rising Star program of the University of the Ryukyus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruko Kurihara.

Additional information

Communicated by M. Byrne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurihara, H., Takano, Y., Kurokawa, D. et al. Ocean acidification reduces biomineralization-related gene expression in the sea urchin, Hemicentrotus pulcherrimus . Mar Biol 159, 2819–2826 (2012). https://doi.org/10.1007/s00227-012-2043-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2043-1

Keywords

Navigation