Skip to main content
Log in

Herbivory by the Caribbean king crab on coral patch reefs

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Caribbean coral reefs are increasingly dominated by macroalgae instead of corals due to several factors, including the decline of herbivores. Yet, virtually unknown is the role of crustacean macrograzers on coral reef macroalgae. We examined the effect of grazing by the Caribbean king crab (Mithrax spinosissimus) on coral patch reef algal communities in the Florida Keys, Florida (USA), by: (1) measuring crab selectivity and consumption of macroalgae, (2) estimating crab density, and (3) comparing the effect of crab herbivory to that of fishes. Mithrax prefers fleshy macroalgae, but it also consumes relatively unpalatable calcareous algae. Per capita grazing rates by Mithrax exceed those of most herbivorous fish, but Mithrax often occurs at low densities on reefs and its foraging activities are reduced in predator-rich environments. Therefore, the effects of grazing by Mithrax tend to be localized and when at low density contribute primarily to spatial heterogeneity in coral reef macroalgal communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adey W (1987) Food production in low-nutrient seas. Bioscience 37:340–348

    Article  Google Scholar 

  • Aronson RB, Precht WF (2001) White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460:25–38

    Article  Google Scholar 

  • Aronson RB, Precht WF (2006) Conservation, precaution, and Caribbean reefs. Coral Reefs 25:441–450

    Article  Google Scholar 

  • Aronson RB, Edmunds PF, Precht WF, Swanson DW, Levitan DR (1994) Large-scale, long-term monitoring of Caribbean coral reefs: simple, quick, inexpensive techniques. Atoll Res Bull 421:1–19

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833

    Article  CAS  Google Scholar 

  • Bellwood DR, Hughes TP, Hoey AS (2006) Sleeping functional group drives coral-reef recovery. Curr Biol 16:2434–2439

    Article  CAS  Google Scholar 

  • Bohnsack JA (1976) The spider crab, Mithrax spinosissimus: an investigation including commercial aspects. Fla Sci 39(4):259–266

    Google Scholar 

  • Bohnsack JA, Harper DE (1988) Length-weight relationships of selected marine reef fishes from the southeastern United States and Caribbean. NOAA technical memorandum NMFS-SEFC-25, pp 1–31

  • Bohnsack JA, McClellan DB, Harper DE, Davenport GS, Konoval GJ, Eklund AM, Contillo JP, Bolden SK, Fischel PC, Sandorff GS, Javech JC, White MW, Pickett MH, Hulsbeck MW, Tobias JL, Ault JS, Meester GA, Smith SG, Luo J (1999) Baseline data for evaluating reef fish populations in the Florida Keys, 1979–1998. NOAA technical memorandum NMFS-SEFSC-427, p 61

  • Brownell WN, Provenzano AJ, Martinez M (1977) Culture of the West Indian spider crab (Mithrax spinosissimus) at Los Roques, Venezuela. Proc World Maricul Soc 8:157–168

    Article  Google Scholar 

  • Bruggemann JH, van Oppen MJH, Breeman AM (1994a) Foraging by the stoplight parrotfish Sparisoma viride. I. Food selection in different, socially determined habitats. Mar Ecol Prog Ser 106:41–55

    Article  Google Scholar 

  • Bruggemann JH, Begeman J, Bosman EM, Verburg P, Breeman AM (1994b) Foraging by the stoplight parrotfish Sparisoma viride. II. Intake and assimilation of food, protein and energy. Mar Ecol Prog Ser 106:57–71

    Article  Google Scholar 

  • Bruno JF, Selig ER, Casey KS, Page CA, Willis BL, Harvell CD, Sweatman H, Melendy AM (2007) Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol 5(6):e124

    Article  Google Scholar 

  • Carpenter RC (1988) Mass mortality of a Caribbean sea urchin: immediate effects on community metabolism and other herbivores. Proc Natl Acad Sci USA 85:511–514

    Article  CAS  Google Scholar 

  • Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortés J, Delbeek JC, DeVantier L, Edgar GJ, Edwards AJ, Fenner D, Guzmán HM, Hoeksema BW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JEN, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563

    Article  CAS  Google Scholar 

  • Choat JH (1991) The biology of herbivorous fishes on coral reefs. In: Sale PF (ed) Ecology of fishes on coral reefs. Academic Press, London

    Google Scholar 

  • Choat JH, Clement KD, Robbins WD (2002) The trophic status of herbivorous fishes on coral reefs I. Dietary analyses. Mar Biol 140:613–623

    Article  CAS  Google Scholar 

  • Coen LD (1988) Herbivory by crabs and the control of algal epibionts on Caribbean host corals. Oecologia 75:198–203

    Article  Google Scholar 

  • Edmunds PJ, Carpenter RC (2001) Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef. Proc Natl Acad Sci USA 98:5067–5071

    Article  CAS  Google Scholar 

  • Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    Article  CAS  Google Scholar 

  • Guzman HM, Tewfik A (2004) Population characteristics and co-occurrence of thee exploited decapods (Panulirus argus, P. guttatus and Mithrax spinosissimus) in Bocas del Toro, Panama. J Shell Res 23(2):575–580

    Google Scholar 

  • Hartnoll RG (1963) The biology of Manx spider crabs. Proc Zool Soc Lond 141:423–496

    Google Scholar 

  • Hatcher BG, Larkum ARO (1983) An experimental analysis of factors controlling the standing crop of the epilithic algal community on coral reef. J Exp Mar Biol Ecol 69:85–96

    Article  Google Scholar 

  • Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol 200:103–134

    Article  CAS  Google Scholar 

  • Hay ME (1997) The ecology and evolution of seaweed-herbivore interactions on coral reefs. Coral Reefs 16:S67–S76

    Article  Google Scholar 

  • Hay ME, Steinberg PD (1992) The chemical ecology of plant herbivore interactions in marine versus terrestrial communities. In: Rosenthal J, Berenbaum M (eds) Herbivores: their interaction with secondary metabolites, evolutionary and ecological processes. Academic Press, San Diego, pp 37–413

    Google Scholar 

  • Hay ME, Renaud PE, William F (1988) Large mobile versus small sedentary herbivores and their resistance to seaweed chemical defenses. Oecologia 75(2):246–252

    Article  Google Scholar 

  • Hay ME, Parker JD, Burkepile DE, Caudill CC, Wilson AE, Hallinan ZP, Chequer AD (2004) Mutualism and aquatic community structure: the enemy of my enemy is my friend. Annu Rev Ecol Evol Syst 35:175–197

    Article  Google Scholar 

  • Hazlett B, Rittschof D (1975) Daily movements and home range in Mithrax spinosissimus (Majidae, Decapoda). Mar Behav Physiol 2:101–118

    Google Scholar 

  • Houtman R, Paul LR, Ungemach RV, Ydenberg RC (1997) Feeding and predator-avoidance by the rose anemone. Mar Biol 128:225–229

    Article  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    Article  CAS  Google Scholar 

  • Hughes TP, Reed DC, Boyle MJ (1987) Herbivory on coral reefs: community structure following mass mortalities of sea urchins. J Exp Mar Biol Ecol 113:39–59

    Article  Google Scholar 

  • Jaap WC, Porter JW, Wheaton JW, Beaver CR, Hackett K, Lybolt M, Callahan MK, Kidney J, Kupfner S, Torres C, Sutherland K (2003) EPA/NOAA coral reef evaluation and monitoring project, 2002 executive summary. Florida Fish and Wildlife Conservation Commission and the University of Georgia, St. Petersburg, p 28

    Google Scholar 

  • Jensen KR (1983) Factors affecting feeding selectivity in herbivorous Ascoglossa (Molluscs: Opisthobranchia). J Exp Mar Biol Ecol 66:135–148

    Article  Google Scholar 

  • Jones GP, Andrew NL (2006) Herbivory and patch dynamics on rocky reefs in temperate Australasia: the roles of fish and sea urchins. Aust Ecol 15(4):505–520

    Article  Google Scholar 

  • Kennish R, Williams GA (1997) Feeding preferences of the herbivorous crab Grapsus albolineatus: the differential influence of algal nutrient content and morphology. Mar Ecol Prog Ser 147:87–95

    Article  Google Scholar 

  • Kintzing MD (2010) Impacts of the spotted spiny lobster (Panulirus guttatus) on the long-spined sea urchin (Diadema antillarium) and patch reef communities in the Florida Keys. Ph.D. dissertation, Old Dominion University, Norfolk, Virginia, p 95

  • Klumpp DW, Pulfrich A (1989) Trophic significance of herbivorous macroinvertebrates on the central Great Barrier Reef. Coral Reefs 8:135–144

    Article  Google Scholar 

  • Koivula K, Rytkönen S, Orell M (1995) Hunger-dependency of hiding behavior after a predator attack in dominant and subordinate willow tits. Ardea 83:397–404

    Google Scholar 

  • Krebs CJ (1999) Ecological methodology. Addison-Wesley, Menlo Park

    Google Scholar 

  • Lessios HA (1988) Mass mortality of Diadema antillarum in the Caribbean: what have we learned? Annu Rev Ecol Syst 19:371–393

    Google Scholar 

  • Lessios HA, Robertson DR, Cubit JD (1984) Spread of Diadema mass mortality through the Caribbean. Science 226:335–337

    Article  CAS  Google Scholar 

  • Lewis SM (1986) The role of herbivorous fishes in the organization of a Caribbean reef community. Ecol Monogr 56:184–200

    Article  Google Scholar 

  • Littler MM, Littler DS, Taylor PR (1995) Selective herbivore increase the biomass of its prey: a chiton-coralline reef building association. Ecology 76:1666–1681

    Article  Google Scholar 

  • Manly BF (1974) A model for certain types of selection experiments. Biometrics 30:281–294

    Article  Google Scholar 

  • McCook LJ (1999) Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18(4):357–367

    Article  Google Scholar 

  • Mojica AM (2009) Effect of the herbivorous channel clinging crab (Mithrax spinosissimus) on patch reef algal communities in the Florida Keys, FL, USA. MS thesis, Old Dominion University, Norfolk, VA, p 63

  • Mumby JP (2006) The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs. Ecol Appl 16:747–769

    Article  Google Scholar 

  • Mumby PJ, Hastings A, Edwards HJ (2007) Thresholds and the resilience of Caribbean coral reefs. Nature 450:98–101

    Article  CAS  Google Scholar 

  • Munro JL (1974) The biology, ecology, exploitation and management of Caribbean reef fishes. Part V. The biology, ecology and bionomics of Caribbean reef fishes: Crustaceans (spiny lobster and crabs). Res Rept Zool Dept Univ West Indies 3(VI):39–48

    Google Scholar 

  • Naeem S (2002) Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology 83:1537–1552

    Article  Google Scholar 

  • Ogden JC, Lobel PS (1977) The role of herbivorous fishes and urchins in coral reef communities. Environ Biol Fish 3:49–63

    Article  Google Scholar 

  • Ogden JC, Brown RA, Salesky N (1973) Grazing by the echinoid Diadema antillarum Phillipi: formation of halos around West Indian Patch reefs. Science 182:75–717

    Article  Google Scholar 

  • Paddack MJ, Cowen RK, Sponaugle S (2006) Grazing pressure of herbivorous coral reef fishes on low coral-cover reefs. Coral Reefs 25(3):461–472

    Article  Google Scholar 

  • Polunin NVC, Harmelin-Vivien M, Galin R (1995) Contrast in algal food processing among five herbivorous coral reef fishes. J Fish Biol 47:455–465

    Article  Google Scholar 

  • Porter JW, Meier OW (1992) Quantification of loss and change in Floridian reef coral populations. Am Zool 32(6):625–640

    Google Scholar 

  • Provenzano AJ, Brownell WN (1977) Larval and early post-larval stages of West Indian spider crab, Mithrax spinosissimus (Lamarck) (Decapoda: Majidae). Proc Biol Soc Wash 90(3):735–752

    Google Scholar 

  • Randall JE (1965) Grazing effects on sea grasses by herbivorous reef fishes in the West Indies. Ecology 46(3):255–260

    Article  Google Scholar 

  • Rathbun MJ (1925) The spider crabs of America. U S Natl Mus Bull 129:163

    Google Scholar 

  • Sih A (1987) Predators and prey lifestyles: an evolutionary eco-logical overview. In: Kerfoot WC, Sih A (eds) Predation: direct and indirect impacts on aquatic communities. Univ Press, New England, pp 203–224

    Google Scholar 

  • Stachowicz JJ, Hay ME (1996) Facultative mutualism between an herbivorous crab and a coralline alga: advantages of eating noxious seaweeds. Oecologia 105(3):377–387

    Article  Google Scholar 

  • Stachowicz JJ, Hay ME (1999a) Reduced mobility is associated with compensatory feeding and increased diet breadth of marine crabs. Mar Ecol Prog Ser 188:169–178

    Article  Google Scholar 

  • Stachowicz JJ, Hay ME (1999b) Reducing predation through chemically-mediated camouflage: indirect effects of plant defenses on herbivores. Ecology 80:495–509

    Article  Google Scholar 

  • Steneck RS (1982) A limpet-coralline alga association: adaptations and defenses between a selective herbivore and its prey. Ecology 63:507–522

    Article  Google Scholar 

  • Tunberg BG, Creswell RL (1991) Development, growth, and survival in the juvenile Caribbean king crab Mithrax spinosissimus (Lamarck) reared in the laboratory. J Crust Biol 11(1):138–149

    Article  Google Scholar 

  • van Rooij JM, Kroan FG, Videler JJ (1996) The social and mating system of the herbivorous reef fish Sparisoma viride: one-male versus multi-male groups. Environ Biol Fish 47(4):353–378

    Article  Google Scholar 

  • van Rooij JM, Videler JJ, Bruggemann JH (1998) High biomass and production but low energy transfer efficiency of Caribbean parrotfish: implications for trophic models of coral reefs. J Fish Biol 53:154–178

    Article  Google Scholar 

  • Vaughan TW (1914) The corals of the Bahamas and South Florida. Carnegie Inst Wash Year Book 13:222–233

    Google Scholar 

  • Wilkinson CR (1996) Global and local threats to coral reef functioning and existence: review and predictions. Mar Freshw Res 50(8):867–878

    Article  Google Scholar 

  • Williams AB (1965) Marine decapod crustaceans of the Carolinas. Fish Bull 65:1–298

    Google Scholar 

  • Williams ID, Polunin NVC, Hendrick VJ (2001) Limits to grazing by herbivorous fishes and the impact of low coral cover on macroalgal abundance on a coral reef in Belize. Mar Ecol Prog Ser 222:187–196

    Article  Google Scholar 

  • Winfree RA, Weinstein S (1989) Food habits of the Caribbean king crab Mithrax spinosissimus (Lamarck). Proc Gulf Caribb Fish Inst 39:458–464

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Butler IV.

Additional information

Communicated by F. Bulleri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, M.J., Mojica, A.M. Herbivory by the Caribbean king crab on coral patch reefs. Mar Biol 159, 2697–2706 (2012). https://doi.org/10.1007/s00227-012-2027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2027-1

Keywords

Navigation