Skip to main content
Log in

Imaging of surface O2 dynamics in corals with magnetic micro optode particles

  • Method
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

We present a new method for quantifying spatio-temporal O2 distribution and dynamics at biologically active surfaces with a complex surface topography. Magnetized O2 optode microparticles (~80–100 μm) containing the NIR-emitting luminophore platinum (II) meso-tetra(4-fluorophenyl) tetrabenzoporphyrin (PtTPTBPF; ex. max. 615 nm; em. max. 780 nm) were distributed across the surface tissue of the scleractinian coral Caulastrea furcata and were held in place with a strong magnet. The O2-dependent luminescence of the particles was mapped with a lifetime imaging system enabling measurements of the lateral surface heterogeneity of the O2 microenvironment across coral polyps exposed to flow. Mapping steady-state O2 concentrations under constant light and O2 dynamics during experimental light–dark shifts enabled us to identify zones of different photosynthetic activities within a single coral polyp linked to the distribution of coral host pigments. Measurements under increasing irradiance showed typical saturation curves of O2 concentration and estimates of gross photosynthesis that could be spatially resolved at ~100 μm pixel resolution. The new method for O2 imaging with magnetized optode particles has much potential to be used in studies of the surface microenvironment of other aquatic systems such as sediments, biofilms, plant, and animal tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen SB, Vestergaard ML, Ainsworth TD, Hoegh-Guldberg O, Kühl M (2010) Acute tissue death (white syndrome) affects the microenvironment of tabular Acropora corals. Aquat Biol 10:99–104

    Article  Google Scholar 

  • Bacon J, Demas J (1987) Determination of oxygen concentrations by luminescence quenching of a polymer-immobilized transition-metal complex. Anal Chem 59:2780–2785

    Article  CAS  Google Scholar 

  • de Beer D, Kühl M, Stambler N, Vaki L (2000) A microsensor study of light enhanced Ca2+ uptake and photo-synthesis in the reef-building coral Favia sp. Mar Ecol Progr Ser 194:75–85

    Article  Google Scholar 

  • Behrens JW, Stahl HJ, Steffensen JF, Glud RN (2007) Oxygen dynamics around buried lesser sandeel, Ammodytes tobiannus (Linnaeus, 1785); mode of ventilation and metabolic requirements. J Exp Biol 210:1006–1014

    Article  Google Scholar 

  • Borisov SM, Klimant I (2008a) Blue LED excitable temperature sensors based on a new Europium(III) chelate. J Fluoresc 18:581–589

    Article  CAS  Google Scholar 

  • Borisov SM, Klimant I (2008b) Luminescent nanobeads for optical sensing and imaging of dissolved oxygen. Microchim Acta 164:7–15

    Article  Google Scholar 

  • Borisov SM, Nuss G, Klimant I (2008a) Red light-excitable oxygen sensing materials based on platinum(II) and palladium(II)benzoporphyrins). Anal Chem 80:9435–9442

    Article  CAS  Google Scholar 

  • Borisov SM, Mayr T, Klimant I (2008b) Poly (styrene-block-vinylpyrrolidone) beads as a versatile material for simple fabrication of optical nanosensors. Anal Chem 80:573–582

    Article  CAS  Google Scholar 

  • Borisov SM, Nuss G, Haas W, Saf R, Schmuck M (2009) New NIR-emitting complexes of platinum (II) and palladium (II) with fluorinated benzoporphyrins. J Photochem Photobiol A Chem 201:128–135

    Article  CAS  Google Scholar 

  • Borisov SM, Gatterer K, Bitschnau B, Klimant I (2010) Preparation and characterization of Chromium(III)-activated Yttrium Aluminum Borate: a new thermographic phosphor for optical sensing and imaging at ambient temperatures. J Phys Chem C 114:9118–9124

    Article  CAS  Google Scholar 

  • Carraway ER, Demas JN, DeGraff BA, Bacon JR (1991) Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes. Anal Chem 63:337–342

    Article  CAS  Google Scholar 

  • Cooper TF, Ulstrup KE, Dandan SS, Heyward A, Kühl M, Muirhead A, O’Leary R, Ziersen B, van Oppen MJH (2011) Niche specialisation of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proc Roy Soc Lond B 278:1840–1850

    Article  Google Scholar 

  • Dobrucki JW (2001) Interaction of oxygen-sensitive luminescent probes Ru (phen) 32+ and Ru (bipy) 32+ with animal and plant cells in vitro. Mechanism of phototoxicity and conditions for non-invasive oxygen measurements. J Photochem Photobiol B: Biol 65:136–144

    Article  CAS  Google Scholar 

  • Fenchel T, Finlay B (2008) Oxygen and the spatial structure of microbial communities. Biol Rev 83:553–569

    Google Scholar 

  • Glud RN (2008) Oxygen dynamics in marine sediments. Mar Biol Res 4:243–289

    Article  Google Scholar 

  • Glud RN, Gundersen JK, Revsbech NP, Jørgensen BB (1995) Effects on the diffusive boundary layer imposed by microelectrodes. Limnol Oceanogr 39:462–467

    Article  Google Scholar 

  • Glud RN, Ramsing NB, Gundersen JK, Klimant I (1996) Planar optrodes: a new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities. Mar Ecol Progr Ser 140:217–226

    Article  Google Scholar 

  • Glud RN, Kühl M, Kohls O, Ramsing NB (1999) Heterogeneity of oxygen production and consumption in a photosynthetic microbial mat as studied by planar optodes. J Phycol 35:270–279

    Article  Google Scholar 

  • Glud RN, Tengberg A, Kühl M, Hall P, Klimant I, Holst G (2001) An in situ instrument for planar O2 optode measurements at benthic interfaces. Limnol Oceanogr 46:2073–2080

    Article  CAS  Google Scholar 

  • Holst G, Grunwald B (2001) Luminescence lifetime imaging with transparent oxygen optodes. Sens Act B 74:78–90

    Article  Google Scholar 

  • Holst G, Kohls O, Klimant I, König B, Richter T, Kühl M (1998) A modular luminescence lifetime imaging system for mapping oxygen distribution. Sens Act B 51:163–170

    Article  Google Scholar 

  • Jimenez IM, Kühl M, Larkum AWD, Ralph PJ (2008) Heat budget and thermal microenvironment of shallow-water corals: do massive corals get warmer than branching corals? Limnol Oceanogr 53:1548–1561

    Article  Google Scholar 

  • Jimenez IM, Kühl M, Larkum AWD, Ralph PJ (2011) Effects of flow and colony morphology on the thermal boundary layer of corals. J Roy Soc Interface 8:1785–1795

    Article  Google Scholar 

  • Klimant I, Kühl M, Glud RN, Holst G (1997) Optical measurement of oxygen and temperature in microscale: strategies and biological applications. Sens Act B 38:29–37

    Article  Google Scholar 

  • Köhler-Rink S, Kühl M (2005) The chemical microenvironment of the symbiotic planktonic foraminifer Orbulina universa. Mar Biol Res 1:68–78

    Article  Google Scholar 

  • Koren K, Mistlberger G, Aigner D, Borisov SM, Zankel A, Pölt P, Klimant I (2010) Characterization of micrometer-sized magnetic optical sensor particles produced via spray-drying. Monatsh Chem 141:691–697

    Article  CAS  Google Scholar 

  • Kühl M (2005) Optical microsensors for analysis of microbial communities. Meth Enzymol 397:166–199

    Article  Google Scholar 

  • Kühl M, Polerecky L (2008) Functional and structural imaging of phototrophic microbial communities and symbioses. Aquat Microb Ecol 53:99–118

    Article  Google Scholar 

  • Kühl M, Cohen Y, Dalsgaard T, Jørgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Progr Ser 117:159–172

    Article  Google Scholar 

  • Kühl M, Glud RN, Ploug H, Ramsing NB (1996) Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J Phycol 32:799–812

    Article  Google Scholar 

  • Kühl M, Rickelt LF, Thar R (2007) Combined imaging of bacteria and oxygen in biofilms. Appl Environ Microbiol 73:6289–6295

    Article  Google Scholar 

  • Kühl M, Holst G, Larkum AWD, Ralph PJ (2008) Imaging of oxygen dynamics within the endolithic algal community of the massive coral Porites lobata. J Phycol 44:541–550

    Article  Google Scholar 

  • Larkum AWD, Koch EM, Kühl M (2003) Diffusive boundary layers and photosynthesis of the epilithic algal community of coral reefs. Mar Biol 142:1073–1082

    CAS  Google Scholar 

  • Mistlberger G, Chojnacki P, Klimant I (2008) Magnetic separator with an optical window. J Phys D Appl Phys 41:085003

    Article  Google Scholar 

  • Mistlberger G, Medina-Castillo AL, Borisov SM, Mayr T, Fernandez-Sanchez JF, Klimant I (2010a) Miniemulsion solvent evaporation: a simple and versatile way to magnetic nanosensors. Mikrochim Acta 172:299–308

    Article  Google Scholar 

  • Mistlberger G, Koren K, Scheucher E, Aigner D, Borisov SM, Zankel A, Pölt P, Klimant I (2010b) Multi-functional magnetic optical sensor particles with tunable sizes for monitoring metabolic parameters and as basis for nanotherapeutics. Adv Funct Mater 20:1842–1851

    Article  CAS  Google Scholar 

  • Oswald F, Schmitt F, Leutenegger A, Ivanchenko S, D’Angelo C, Salih A, Maslakova S, Bulina M, Schirmbeck R, Nienhaus GU, Matz MV, Wiedenmann J (2007) Contributions of host and symbiont pigments to the coloration of reef corals. FEBS J 274:1102–1109

    Article  CAS  Google Scholar 

  • Ramsing NB, Gundersen JK (2000) Seawater and gases: tabulated physical parameters of interest to people working with microsensors in marine systems. http://www.unisense.com

  • Revsbech NP (2005) Analysis of microbial communities with electrochemical microsensors and microscale biosensors. Meth Enzymol 397:147–166

    Article  CAS  Google Scholar 

  • Salih A, Larkum AWD, Cox G, Kühl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850–853

    Article  CAS  Google Scholar 

  • Spilling K, Greve TM, Titelman J, Kühl M (2010) Microsensor measurements of the external and internal microenvironment of Fucus vesiculosus (Phaeophyceae). J Phycol 46:1350–1355

    Article  Google Scholar 

  • Staal M, Borisov SM, Rickelt LF, Klimant I, Kühl M (2011) Ultrabright planar optodes for luminescence life-time based microscopic imaging of O2 dynamics in biofilms. J Microbiol Meth 85:67–74

    Article  CAS  Google Scholar 

  • Ulstrup KE, Ralph PJ, Larkum AWD, Kühl M (2006) Intra-colonial variability in light acclimation of zooxanthellae in coral tissues of Pocillopora damicornis. Mar Biol 149:1325–1335

    Article  Google Scholar 

  • Ulstrup KE, Kühl M, Bourne DG (2007) Zooxanthellae harvested by ciliates associated with brown band syndrome of corals remain photosynthetically competent. Appl Environ Microbiol 73:1968–1975

    Article  CAS  Google Scholar 

  • Weber M, Lott C, Fabricius KE (2006) Sedimentation stress in a scleractinian coral exposed to terrestrial and marine sediments with contrasting physical, organic and geochemical properties. J Exp Mar Biol Ecol 336:18–32

    Article  CAS  Google Scholar 

  • Wenzhöfer F, Glud RN (2004) Small-scale spatial and temporal variability in benthic O2 dynamics of coastal sediments: Impact of fauna activity. Limnol Oceanogr 49:1471–1481

    Article  Google Scholar 

Download references

Acknowledgments

We thank Kristian Vedel and other staff of Øresundsakvariet at the Marine Biology Section for maintenance of the corals and the coral growth facility. Erik Trampe is thanked for help with figure formatting. This study was supported by grants from the Danish Natural Science Research Council (MK) and the Danish Research Council for Technology and Production (MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kühl.

Additional information

Communicated by M. Huettel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabricius-Dyg, J., Mistlberger, G., Staal, M. et al. Imaging of surface O2 dynamics in corals with magnetic micro optode particles. Mar Biol 159, 1621–1631 (2012). https://doi.org/10.1007/s00227-012-1920-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1920-y

Keywords

Navigation