Skip to main content
Log in

Tolerance of Mediterranean seagrasses (Posidonia oceanica and Cymodocea nodosa) to hypersaline stress: water relations and osmolyte concentrations

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The present study examines for the first time the effects of increased salinity on water relations and osmolyte (carbohydrates and amino acids) concentrations in two Mediterranean seagrass species, Posidonia oceanica and Cymodocea nodosa, which are adapted to growth in environments with contrasting salinity and have a known differential sensitivity to alterations in ambient salinity. The specific aim was to obtain insights into their respective capacities to cope with natural or anthropogenically induced (e.g. desalination plants) hypersaline stress and its ecological implications. To this end, large plant fragments of both seagrass species were maintained for 47 days in a laboratory mesocosm system under ambient salinity (37 psu; control) and three chronic hypersaline conditions (39, 41 and 43 psu). Analyses of leaf-tissue osmolality indicated that both species followed a dehydration avoidance strategy, decreasing their leaf water potential (Ψw) as the external salinity increased, but using different physiological mechanisms: whereas P. oceanica leaves exhibited a reduction in osmotic potential (Ψπ), C. nodosa leaves maintained osmotic stability through a decrease in turgor pressure (Ψp) probably mediated through cell-hardening processes. Accordingly, the concentrations of soluble sugars and some amino acids (mainly Pro and Gly) suggested the activation of osmoregulatory processes in P. oceanica leaves, but not in C. nodosa leaves. Osmotic adjustments probably interfered with leaf growth and shoot survival of P. oceanica under hypersaline stress, whereas C. nodosa showed a more efficient physiological capacity to maintain plant performance under the same experimental conditions. These results are consistent with the more euryhaline ecological behaviour of C. nodosa and contribute to understanding the high vulnerability shown by P. oceanica to even mild increments in seawater salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams JB, Bate GC (1994) The ecological implications of tolerance to salinity by Ruppia cirrhosa (Petagna) Grande and Zostera capensis Setchell. Bot Mar 37:449–456

    Google Scholar 

  • Arber A (1920) Water plants. A study of aquatic angiosperms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ashraf M, Athar HR (2009) Salinity and water stress improving crop efficiency. In: Kratochwil A, Lieth H (eds) Tasks for vegetation science, vol 42. Springer, The Netherlands

    Google Scholar 

  • Augier H, Santimone M, Vicentelli M (1976) Contribution à l’etude de la repartition de l’azote total, des protèines et des acides aminès chez la phanerogame marine Cymodocea nodosa (Ucria) Asch. Soc Phycol De France 22:120–126

    Google Scholar 

  • Azcón-Bieto J, Talón M (2000) Fundamentos de fisiología vegetal. McGraw-Hill Interamericana

  • Bates L (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Berns DM (2003) Physiological responses of Thalassia testudinum and Ruppia maritima to experimental salinity levels. PhD thesis, University of South Florida

  • Bisson MA, Bartholomew D (1984) Osmoregulation or turgor regulation in Chara? Plant Physiol 74:252–255

    Article  CAS  Google Scholar 

  • Bisson MA, Kirst GO (1979) Osmotic adaptation in the marine alga Grifithsia monilis (Rhodophyceae): the role of ions and organic compounds. Aust J Plant Physiol 6:523–538

    CAS  Google Scholar 

  • Bisson MA, Kirst GO (1995) Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften 82:461–471

    Article  CAS  Google Scholar 

  • Boudouresque FC, Bernard G, Shili A, Verlaque M (2009) Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review. Bot Mar 52:395–418

    Article  Google Scholar 

  • Boyer JS (1995) Measuring the water status of plants and soils. Academic Press, San Diego

    Google Scholar 

  • Brock MA (1981) Accumulation of proline in a submerged aquatic halophyte Ruppia maritima L. Oecologia 51:217–219

    Article  Google Scholar 

  • Campos PS, Ramalho JC, Lauriano JA, Silav MJ, Mateos MD (1999) Effects of drought on photosynthetic performance and water relations of 4 Vigna genotypes. Photosynthetica 36:79–87

    Article  CAS  Google Scholar 

  • Drew EA (1978a) Carbohydrate and inositol metabolism in seagrass Cymodocea nodosa. New Phytol 81:249–264

    Article  CAS  Google Scholar 

  • Drew EA (1978b) Factors affecting photosynthesis and its seasonal variation in the seagrass Cymodocea nodosa (Ucria) Aschers, and Posidonia oceanica (L.) Delile in the Mediterranean. J Exp Mar Biol Ecol 31:173–194

    Article  CAS  Google Scholar 

  • Ehlting B, Dluzniewska P, Dietrich H, Selle A, Teuber M, Hänsch R, Nehls U, Polle A, Schnitzler J-P, Rennenberg H (2007) Interaction of nitrogen nutrition and salinity in poplar (Populus tremula. alba). Plant Cell Environ 30:796–811

    Article  CAS  Google Scholar 

  • Fernández-Torquemada Y, Sánchez-Lizaso JL (2005) Effects of salinity on leaf growth and survival of the Mediterranean seagrass Posidonia oceanica (L.) Delile. J Exp Mar Biol Ecol 320:57–63

    Article  Google Scholar 

  • Fernández-Torquemada Y, Sánchez-Lizaso JL (2006) Effects of salinity on growth and survival of Cymodocea nodosa (Ucria) Ascherson and Zostera noltii Hornemann. Biol Mar Medit 13:46–47

    Google Scholar 

  • Fernández-Torquemada Y, Sánchez-Lizaso JL, Gonzalez-Correa JM (2005) Preliminary results of the monitoring of the brine discharge produced by the SWRO desalination plant of Alicante (SE Spain). Desalination 182:395–402

    Article  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanisms of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121

    Article  CAS  Google Scholar 

  • Gacia E, Invers O, Manzanera M, Ballesteros E, Romero J (2007) Impact of the brine from a desalination plant on a shallow seagrass (Posidonia oceanica) meadow. Estuar Coast Shelf Sci 72:579–590

    Article  CAS  Google Scholar 

  • Green EP, Short FT (2003) World atlas of seagrasses. University of California Press, Berkeley

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non halophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Holmer M, Wirachwong P, Thomsen MS (2011) Negative effects of stress-resistant drift algae and high temperature on a small ephemeral seagrass species. Mar Biol 158:297–309

    Article  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Ann Rev Plant Physiol 24:519–570

    Article  CAS  Google Scholar 

  • Invers O, Kraemer GP, Pérez M, Romero J (2004) Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrass Posidonia oceanica. J Exp Mar Biol Ecol 303:97–114

    Article  CAS  Google Scholar 

  • Kahn MA, Weber DJ (2006) Ecophysiology of high salinity tolerant plants. In: Kratochwil A, Lieth H (eds) Tasks for vegetation science, vol 40. Springer, The Netherlands

    Google Scholar 

  • Kirst GO (1989) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Mol Biol 40:21–53

    Google Scholar 

  • Koch MS, Schopmeyer SA, Kyhn-Hansen C, Madden CJ, Peters JS (2007) Tropical seagrass species tolerance to hypersalinity stress. Aquat Bot 86:14–24

    Article  CAS  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego

    Google Scholar 

  • Kuo J, Den Hartog C (2000) Seagrasses: a profile of an ecological group. Biol Mar Mediterr 7:3–17

    Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Academic Press, New York

    Google Scholar 

  • Marbá N, Hemminga MA, Mateo MA, Duarte CM, Mass Y, Terrados J, Gacia E (2002) Carbon and nutrient translocation between seagrass ramets. Mar Ecol Prog Ser 226:287–300

    Article  Google Scholar 

  • Marcum KB (2006) Saline tolerance physiology in grasses. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Springer, Dordrecht, pp 157–172

    Chapter  Google Scholar 

  • Margalef R (1985) Western Mediterranean. Pergamon Press, London

    Google Scholar 

  • Marín-Guirao L, Sandoval-Gil JM, Ruiz JM, Sánchez-Lizaso JL (2011) Photosynthesis, growth and survival of the Mediterranean seagrass Posidonia oceanica in response to simulated salinity increases in a laboratory mesocosm system. Estuar Coast Shelf Sci. doi:10.1016/j.ecss.2011.01.003

    Google Scholar 

  • McMillan C, Moseley FN (1967) Salinity tolerances of five marine spermatophytes of Redfish Bay, Texas. Ecology 48:503–506

    Article  Google Scholar 

  • McNeil SD, Nuccio LM, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 120:945–949

    Article  CAS  Google Scholar 

  • Morton AJ, Callister IK, Wade NM (1996) Environmental impact of seawater distillation and reverse osmosis processes. Desalination 108:1–10

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  • Murphy LR, Kinsey ST, Durako MJ (2003) Physiological effects of short-term salinity changes on Ruppia maritima. Aquat Bot 75:293–309

    Article  Google Scholar 

  • Nobel PS (2009) Physicochemical and environmental plant physiology, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Oksanen L (2001) Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 94:27–38

    Article  Google Scholar 

  • Olesen B, Enríquez S, Duarte C, Sand-Jensen K (2002) Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Mar Ecol Prog Ser 236:89–97

    Article  Google Scholar 

  • Olivé I, García-Sánchez MP, Brun FG, Vergara JJ, Pérez-Llorens JL (2009) Interactions of light and organic matter under contrasting resource simulated environments: the importance of clonal traits in the seagrass Zostera noltii. Hydrobiologia 629:199–208

    Article  Google Scholar 

  • Pagès JF, Pérez M, Romero J (2010) Sensitivity of the seagrass Cymodocea nodosa to hypersaline conditions: a microcosm approach. J Exp Mar Biol Ecol. doi:10.1016/j.jembe.2010.02.017

    Google Scholar 

  • Palomar P, Losada IJ (2010) Desalination in Spain: recent developments and recommendations. Desalination 255:97–106

    Article  CAS  Google Scholar 

  • Parida SK, Das AB (2005) Salt tolerance and salinity effects on plants. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  Google Scholar 

  • Pellegini MI, Riouall R (1973) Contribution à l’ètude biochimique des phanerogames marines et d’eaux saumâtres (acides aminès protidiques). Rapp Comm inter Mer Mèditer 21:709–711

    Google Scholar 

  • Pérez M, Romero J (1994) Growth dynamics, production, and nutrient status of the seagrass Cymodocea nodosa in a Mediterranean semi-estuarine environment. PSZN I Mar Ecol 15:51–64

    Article  Google Scholar 

  • Pirc H (1985) Growth dynamics in Posidonia oceanica (L.) Delile. PSZNI Mar Ecol 6:141–165

    Article  CAS  Google Scholar 

  • Pirc H (1989) Seasonal changes in soluble carbohydrates, starch and energy content in Mediterranean seagrasses. PSZNI Mar Ecol 10:97–105

    Article  CAS  Google Scholar 

  • Pirc H, Wollenweber B (1988) Seasonal-changes in Nitrogen, free amino-acids, and C/N ratio in Mediterranean Seagrasses. PSZNI Mar Ecol 9:167–179

    Article  CAS  Google Scholar 

  • Proccaccini G, Buia MC, Gambi MC, Perez M, Pergent G, Pergent-Martini C, Romero J (2003) Seagrasses of the western mediterranean. In: Green EP, Short FT (eds) World atlas of seagrasses. University of California Press, Berkeley, pp 48–58

    Google Scholar 

  • Pulich WM (1986) Variations in leaf soluble amino acids and ammonium content in subtropical seagrasses related to salinity stress. Plant Physiol 80:283–286

    Article  CAS  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Romero J (1989) Primary production of Posidonia oceanica beds in the Medes Islands (Girona NE Spain). In: Boudouresque CF, Meinesz A, Fresi E, Gravez V (eds) International workshop on Posidonia Beds, vol 2. GIS Posidonie, Marseille, pp 85–91

    Google Scholar 

  • Ruiz JM, Marín-Guirao L, Sandoval-Gil JM (2009) Responses of the Mediterranean seagrass Posidonia oceanica to in situ simulated salinity increase. Bot Mar 52:459–470

    Article  Google Scholar 

  • Schmid J, Amrhein N (1999) The shikimate pathway. In: Singh BK (ed) Plant amino acids. Marcel Dekker, New York, pp 147–169

    Google Scholar 

  • Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol 350:3–20

    Article  Google Scholar 

  • Souza RP, Machado EC, Silva JAB, Lagôa AMMA, Silveira JAG (2004) Photosynthetic gas exchange, chlorophyll fluorescente and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ Exp Bot 51:45–56

    Article  CAS  Google Scholar 

  • Stewart GR, Lee JA (1974) The role of proline accumulation in halophytes. Planta 120:279–289

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2003) Water and plant cells. In: Taiz L, Zeiger E (eds) Plant physiology, 3rd edn. Sinauer Associates, Sunderland, pp 33–46

    Google Scholar 

  • Terrados J, Ros J (1991) Production dynamics in a macrophyte dominated ecosystem: the Mar Menor coastal lagoon (SE Spain). Oecol Aquat 10:255–270

    Google Scholar 

  • Touchette BW (2007) Seagrass-salinity interactions: physiological mechanisms used by submersed marine angiosperms for a life at sea. J Exp Mar Biol Ecol 350:194–215

    Article  Google Scholar 

  • Touchette BW, Iannacone LR, Turner GE, Frank AR (2007) Drought tolerance versus drought avoidance: a comparison of plant-water relations in herbaceous wetland plants subjected to water withdrawal and repletion. Wetlands 27:656–667

    Article  Google Scholar 

  • Tyerman SD (1982) Stationary volumetric elastic modulus and osmotic pressure of the leaf cells of Halophila ovalis, Zostera capricorni, and Posidonia australis. Plant Physiol 69:957–965

    Article  CAS  Google Scholar 

  • Tyerman SD (1989) Solute and water relations of seagrasses. In: Larkum AWD, Mc Comb AJ, Sheperd SA (eds) Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian Region. Elsevier, Amsterdam, pp 723–759

    Google Scholar 

  • Tyerman SD, Hatcher AI, West RJ, Larkum AWD (1984) Posidonia australis growing in altered salinities: leaf growth, regulation of turgor and the development of osmotic gradients. Aust J Plant Physiol 11:35–47

    Article  Google Scholar 

  • Van Diggelen J, Rozema J, Broekman R (1987) Mineral composition and proline accumulation by Zostera marina L. in response to environmental salinity. Aquat Bot 27:169–176

    Article  Google Scholar 

  • Vermaat JE, Verhagen FCA, Lindenburg D (2000) Contrasting responses in two populations of Zostera noltii Hornem. to experimental photoperiod manipulation at two salinities. Aquat Bot 67:179–189

    Article  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  CAS  Google Scholar 

  • Walker DI, McComb AJ (1990) Salinity response of the seagrass Amphibolis antarctica (Labill.) Sonder et Aschers: an experimental validation of field results. Aquat Bot 36:359–366

    Article  Google Scholar 

  • Wingler A, Lea PJ, Quick PW, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Phil Trans R Soc Lond Biol 355:1517–1529

    Article  CAS  Google Scholar 

  • Wullschleger SD, Oosterhuis DM (1986) A rapid leaf-disc sampler for psychrometric water potential measurements. Plant Physiol 81:684–685

    Article  CAS  Google Scholar 

  • Wyn Jones RG, Gorham J (1983) Osmoregulation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology. Springer, Berlin, pp 35–58

    Google Scholar 

  • Ye CJ, Zhao KF (2003) Osmotically active compounds and their localization in the marine halophyte eelgrass. Biol Plant 46:137–140

    Article  CAS  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    CAS  Google Scholar 

  • Zar JH (1984) Statistical significance of mutation frequencies and the power of statistical testing using the Poisson-distribution. Biometr J 26:83–88

    Article  Google Scholar 

  • Zhao J, Williams CC, Last RL (1998) Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. Plant Cell 10:359–370

    Article  CAS  Google Scholar 

  • Zieman JC (1974) Methods for the study of the growth and production of turtle grass Thalassia testudinum König. Aquaculture 4:139–143

    Article  Google Scholar 

  • Zoppa M, Gallo L, Zacchello F, Giordano G (2006) Method for the quantification of underivatized amino acids on dry blood spots from newborn screening by HPLC-ESI-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci 831:267–273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by two Spanish Government Ministries: the Ministerio de Medio Ambiente y Medio Rural y Marino (OSMOGRASS project no. 021/SGTB/2007/1.3) and the Ministerio de Ciencia e Innovación (OSMOGRASS II project no. CTM2009-08413MAR); and a research grant awarded to J. M. Sandoval-Gil by the University of Alicante. Field and laboratory logistical support was provided by technicians of the Spanish Oceanography Institute R. García Muñoz and A. Ramos Segura and the PhD students of the University of Alicante J. Bernardeau Esteller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Ruiz.

Additional information

Communicated by P. Ralph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandoval-Gil, J.M., Marín-Guirao, L. & Ruiz, J.M. Tolerance of Mediterranean seagrasses (Posidonia oceanica and Cymodocea nodosa) to hypersaline stress: water relations and osmolyte concentrations. Mar Biol 159, 1129–1141 (2012). https://doi.org/10.1007/s00227-012-1892-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1892-y

Keywords

Navigation