Skip to main content
Log in

Evolution, radiation and chemotaxonomy of Lamellodysidea, a demosponge genus with anti-plasmodial metabolites

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Sponges of the family Dysideidae (Dictyoceratida) are renowned for their diversity of secondary metabolites, and its genus Lamellodysidea, particularly Lamellodysidea herbacea, is the most studied taxon biochemically. Despite its importance, the taxonomic status of L. herbacea—whether it is a distinct species or a species complex—has never been assessed. Recent biochemical profiling revealed anti-plasmodial activity of brominated compounds in Lamellodysidea of the Pacific. Here, we present a comparative chemotaxonomic and molecular analysis of selected Dysideidae from the Pacific and the Indian Ocean (New Caledonia, Great Barrier Reef, Fiji, Mayotte, Guam, Palau). We investigated the phylogenetic relationships between the populations and assessed their bioactive (PBDE) compounds in order to unravel the taxonomic status of this commercially important group of sponges and assessed patterns of dispersal and biochemical variation. The molecular phylogeny was based on the internal transcribed ribosomal spacer and compared against a PBDE phylogeny for several specimens. Molecular data revealed a diversity of Indo-Pacific L. herbacea populations, also reflected by different PBDE compound profiles. Molecular and biochemical data also revealed a Lamellodysidea species new to science. Several specimens misidentified as Lamellodysidea were detected based on their position on different clades in the molecular phylogeny and their production of different halogenated compounds (brominated vs. chlorinated). The direct comparison of molecular and biochemical data also provided evidence for the occurrence of a host switch event and support for the theory that abiotic factors, such as sedimentation, affect the chemical constituents produced in L. herbacea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Battershill CN, Bergquist PR (1990) The influence of storms on asexual reproduction, recruitment, and survivorship of sponges. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, pp 397–403

    Google Scholar 

  • Berthold RJ, Borowitzka MA, Mackay MA (1982) The ultrastructure of Oscillatoria spongeliae, the blue green algal endosymbiont of the sponge Dysidea herbacea. Phycologia 21:327–335

    Article  Google Scholar 

  • Blanquer A, Uriz MJ (2007) Cryptic speciation in marine sponges evidenced by mitochondrial and nuclear genes: a phylogenetic approach. Mol Phylogenet Evol 45:392–397

    Article  CAS  Google Scholar 

  • Blunt JW, Munro MHG (2003) MarinLit. A database of the literature on marine natural products for use on a macintosh computer prepared and maintained by the Marine Chemistry Group (Department of Chemistry, University of Canterbury, Canterbury, New Zealand)

  • Blunt J, Copp B, Munro M, Northcote P, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196–268

    Article  CAS  Google Scholar 

  • Borowitzka MA, Hinde R, Pironet F (1988) Carbon fixation by the sponge Dysidea herbacea and its endosymbiont Oscillatoria spongeliae. In: Choat JH, Barnes D, Borowitzka MA, Coll JC, et al. (eds) Proceedings of the sixth international coral reef symposium, Townsville. 8th–12 August 1988. Vol 3: Contributed papers (mini symposium 11/16 to 22). 6th international coral reef symposium executive committee, pp 151–156

  • Calcul L, Chow R, Oliver AG, Tenney K, White KN, Wood AW, Fiorilla C, Crews P (2009) NMR strategy for unraveling structures of bioactive sponge-derived oxy-polyhalogenated diphenyl ethers. J Nat Prod 72:443–449

    Article  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  Google Scholar 

  • Chandra M (2009) Secondary metabolites composition and geographical distribution of marine sponges of the genus Dysidea. M.Sc. School of Biological & Chemical Sciences, Suva

    Google Scholar 

  • CIESM (2002) Alien marine organisms introduced by ships in the Mediterranean and Black seas, Monaco

  • Colin PL, Arneson AC (1995) Tropical Pacific invertebrates. Coral Reef Press, Beverly Hills

    Google Scholar 

  • Cook SDC, Bergquist PR (2002) Family Dysideidae gray, 1867. In: Hooper JNA, Van Soest RWM (eds) Systema porifera. A guide to the classification of sponges. Kluwer/Plenum, Dordrecht, New York, pp 1061–1066

  • Dumdei EJ, Simpson JS, Garson MJ, Byriel KA, Kennard CHL (1997) New chlorinated metabolites from the tropical marine sponge Dysidea herbacea. Aust J Chem 50:139–144

    Article  CAS  Google Scholar 

  • Dunlop RW, Kazlauskas R, March G, Murphy PT, Wells RJ (1982) New furano-sesquiterpenes from the sponge Dysidea herbacea. Aust J Chem 35:95–103

    Article  CAS  Google Scholar 

  • Elyakov GB, Kuznetsova T, Mikhailov VV, Maltsev II, Voinov VG, Fedoreyev SA (1991) Brominated diphenyl ethers from a marine bacterium associated with the sponge Dysidea sp. Experientia 47:632–633

    Article  CAS  Google Scholar 

  • Erpenbeck D, Voigt O, Gültas M, Wörheide G (2008) The sponge genetree server-providing a phylogenetic backbone for poriferan evolutionary studies. Zootaxa 1939:58–60

    Google Scholar 

  • Erpenbeck D, Weier T, de Voogd NJ, Wörheide G, Sutcliffe P, Todd JA, Michel E (2011) Insights into the evolution of freshwater sponges (Porifera: Demospongiae: Spongillina): barcoding and phylogenetic data from Lake Tanganyika endemics indicate multiple invasions and unsettle existing taxonomy. Mol Phylogenet Evol 61:231–236

    Article  Google Scholar 

  • Faulkner DJ, He HY, Unson MD, Bewley CA, Garson MJ (1993) New metabolites from marine sponges—are symbionts important? Gazz Chim Ital 123:301–307

    CAS  Google Scholar 

  • Faulkner DJ, Unson MD, Bewley CA (1994) The chemistry of some sponges and their symbionts. Pure Appl Chem 66:1983–1990

    Article  CAS  Google Scholar 

  • Faulkner DJ, Harper MK, Salomon CE, Schmidt EW (1999) Localisation of bioactive metabolites in marine sponges. Mem Queensl Mus 44:167–173

    Google Scholar 

  • Flowers AE, Garson MJ, Byriel KA, Kennard CHL (1998) Two new isonakafurans from the Great Barrier Reef sponge Dysidea sp. nov. Aust J Chem 51:195–200

    Article  CAS  Google Scholar 

  • Fu X, Schmitz FJ (1996) New brominated diphenyl ether from an unidentified species of Dysidea sponge. C-13 NMR data for some brominated diphenyl ethers. J Nat Prod 59:1102–1103

    Article  CAS  Google Scholar 

  • Fu XO, Schmitz EJ, Govindan M, Abbas SA, Hanson KM, Horton PA, Crews P (1995) Enzyme-inhibitors—new and known polybrominated phenols and diphenyl ethers from 4 Indo-Pacific Dysidea sponges. J Nat Prod Lloydia 58:1384–1391

    Article  CAS  Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    CAS  Google Scholar 

  • Hanif N, Tanaka J, Setiawan A, Trianto A, de Voogd NJ, Murni A, Tanaka C, Higa T (2007) Polybrominated diphenyl ethers from the Indonesian sponge Lamellodysidea herbacea. J Nat Prod 70:432–435

    Article  CAS  Google Scholar 

  • Hinde R, Pironet F, Borowitzka MA (1994) Isolation of Oscillatoria spongeliae, the filamentous cyanobacterial symbiont of the marine sponge Dysidea herbacea. Mar Biol 119:99–104

    Article  Google Scholar 

  • Hooper JNA, Lévi C (1994) Biogeography of Indo-west Pacific sponges: Microcionidae, Raspailidae, Axinellidae. In: Braekman JC, Van Soest RWM, Kempen TMGV (eds) Sponges in time and space. Balkema, Rotterdam, pp 191–212

    Google Scholar 

  • Jensen PR, Fenical W (1994) Strategies for the discovery of secondary metabolites from marine bacteria—ecological perspectives. Ann Rev Microbiol 48:559–584

    Article  CAS  Google Scholar 

  • Jimenez JI, Scheuer PJ (2001) New lipopeptides from the caribbean cyanobacterium Lyngbya majuscula. J Nat Prod 64:200–203

    Article  CAS  Google Scholar 

  • Liu HW, Namikoshi M, Meguro S, Nagai H, Kobayashi H, Yao XS (2004) Isolation and characterization of polybrominated diphenyl ethers as inhibitors of microtubule assembly from the marine sponge Phyllospongia dendyi collected at Palau. J Nat Prod 67:472–474

    Article  CAS  Google Scholar 

  • Maldonado M (2006) The ecology of the sponge larva. Can J Zool Revue Can De Zool 84:175–194

    Article  Google Scholar 

  • Maldonado M, Giraud K, Carmona C (2008) Effects of sediment on the survival of asexually produced sponge recruits. Mar Biol 154:631–641

    Article  CAS  Google Scholar 

  • Mather P, Bennett I (1993) A coral reef handbook: a guide to the geology, flora and fauna of the Great Barrier Reef, 3rd edn. Surrey Beatty & Sons Pty Limited, Chipping Norton, pp i–xvi, 1–264

  • Norton RS, Croft KD, Wells RJ (1981) Polybrominated oxydiphenol derivatives from the sponge Dysidea herbacea—structure determination by analysis of C-13 spin-lattice relaxation data for quaternary carbons and C-13-H-1 coupling-constants. Tetrahedron 37:2341–2349

    Article  CAS  Google Scholar 

  • Pöppe J, Sutcliffe P, Hooper JNA, Wörheide G, Erpenbeck D (2010) COI Barcoding reveals new clades and radiation patterns of Indo-Pacific sponges of the Family Irciniidae (Demospongiae: Dictyoceratida). PLoS ONE 5:e9950

    Article  Google Scholar 

  • Reveillaud J, van Soest R, Derycke S, Picton B, Rigaux A, Vanreusel A (2011) Phylogenetic relationships among NE Atlantic Plocamionida Topsent (1927) (Porifera, Poecilosclerida): under-estimated diversity in reef ecosystems. PLoS ONE 6:e16533

    Article  CAS  Google Scholar 

  • Ridley CP, Bergquist PR, Harper MK, Faulkner DJ, Hooper JNA, Haygood MG (2005) Speciation and Biosynthetic variation in four dictyoceratid sponges and their cyanobacterial symbiont, Oscillatoria spongeliae. Chem Biol 12:397–406

    Article  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland

  • Thacker RW, Starnes S (2003) Host specificity of the symbiotic cyanobacterium Oscillatoria spongeliae in marine sponges, Dysidea spp. Mar Biol 142:643–648

    CAS  Google Scholar 

  • Thacker R, Diaz MC, Rutzler K, Erwin P, Kimble SJ, Pierce MJ, Dillard SL (2007) Phylogenetic relationships among the filamentous cyanobacterial symbionts of Caribbean sponges and a comparison of photosynthetic production between sponges hosting filamentous and unicellular cyanobacteria. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Museu Nacional de Rio de Janiero Book Series, Rio de Janeiro, pp 621–626

    Google Scholar 

  • Thomas PA (1982) Sponges of Papua and New Guinea I. Order Keratosida Grant. J Mar Biol Assoc India 24:15–22

    Google Scholar 

  • Unson MD, Faulkner DJ (1993) Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia 49:349–353

    Article  CAS  Google Scholar 

  • Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119:1–11

    Article  CAS  Google Scholar 

  • Uriz M, Maldonado M, Turon X, Marti R (1998) How do reproductive output, larval behaviour, and recruitment contribute to adult spatial patterns in Mediterrean encrusting sponges? Mar Ecol Prog Ser 167:137–148

    Article  Google Scholar 

  • Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314

    Article  Google Scholar 

  • Van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez de Glasby B, Hajdu E, Pisera A, Manconi R, Schönberg C, Janussen D, Tabachnick KR, Klautau M, Picton B, Kelly M (2011) World Porifera database. Available online under http://www.marinespecies.org/porifera

  • Vilanova E, Muricy G (2001) Taxonomy and distribution of the sponge genus Dysidea Johnston, 1842 (Demospongiae, Dendroceratida) in the extractive reserve of Arraial Do Cabo, SE Brazil (SW Atlantic). Zoologia 453:1–16

    Google Scholar 

  • Vogler C, Benzie J, Lessios H, Barber P, Worheide G (2008) A threat to coral reefs multiplied? Four species of crown-of-thorns starfish. Biol Lett 4:696–699

    Article  Google Scholar 

  • Wilkinson CR (1978) Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges. Mar Biol 49:177–185

    Article  Google Scholar 

  • Wilson HV (1925) Silicious and horny sponges collected by the US fisheries steamer ‘Albatross’ during the Philippine expedition, 1907–10. In: Contributions to the biology of the Philippine Archipelago and adjacent regions. Bull US Natl Mus 100, pp 273–532

  • Wörheide G (1998) The reef cave dwelling ultraconservative coralline demosponge Astrosclera willeyana Lister 1900 from the Indo-Pacific—micromorphology, ultrastructure, biocalcification, isotope record, taxonomy, biogeography, phylogeny. Facies 38:1–88

    Article  Google Scholar 

  • Wörheide G, Degnan BM, Hooper JNA, Reitner J (2002a) Biogeography and taxonomy of the Indo-Pacific reef cave dwelling coralline demosponge Astrosclerawilleyana’: new data from nuclear internal transcribed spacer sequences. In: Moosa KM, Soemodihardjo S, Soegiarto A, Romimohtarto K, Nontji A, Soekarno, Suharsono (eds) Proceedings of the 9th international coral reef symposium, Bali, 23–27 October 2000. State ministry for the environment, Indonesia, Indonesian Institute of Sciences & The International Society for Reef Studies, Bali, pp 339–345

  • Wörheide G, Hooper J, Degnan BM (2002b) Phylogeography of western Pacific Leucetta ‘chagosensis’ (Porifera: Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the Great Barrier Reef World Heritage Area (Australia). Mol Ecol 11:1753–1768

    Article  Google Scholar 

  • Wörheide G, Epp LS, Macis L (2008) Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): founder effects, vicariance, or both? BMC Evol Biol 8:24

    Article  Google Scholar 

  • Xavier JR, Rachello-Dolmen PG, Parra-Velandia F, Schonberg CHL, Breeuwer JAJ, van Soest RWM (2010) Molecular evidence of cryptic speciation in the “cosmopolitan” excavating sponge Cliona celata (Porifera, Clionaidae). Mol Phylogenet Evol 56:13–20

    Article  CAS  Google Scholar 

  • Xu YM, Johnson RK, Hecht SM (2005) Polybrominated diphenyl ethers from a sponge of the Dysidea genus that inhibit Tie2 kinase. Bioorg Med Chem 13:657–659

    Article  CAS  Google Scholar 

  • Zea S (1993) Recruitment of demosponges (Porifera, Demospongiae) in rocky and coral reef habitats of Santa Marta, Colombian Caribbean. Mar Ecol 14:1–21

    Article  Google Scholar 

Download references

Acknowledgments

DE acknowledges financial support of the European Union under a Marie-Curie outgoing fellowship (MOIF-CT-2004 Contract No 2882). MC thanks the French Embassy in Suva (Fiji) and the Agence Française de Développement through the CRISP (Coral Reef Initiative in the South Pacific) project for financial support. The governments of the Solomon and Fiji Islands allowed us to collect, while the respective Fisheries Departments assisted us with the conduction of the field work. GW is grateful for a grant from the German Science Foundation (DFG). GW and DE appreciate funding from the GeoBio-CenterLMU for support of sponge barcoding, and together with JH gratefully acknowledge the financial support of the Marine Barcoding of Life (MarBOL) initiative with funding from the Alfred P Sloan Foundation, New York. We thank the IRD-SEOH center in Noumea, New Caledonia, for their help in collecting samples and Bob Thacker for fruitful discussions. Two anonymous reviewers provided us with very detailed suggestions for the improvements of the manuscript, and they are warmly thanked here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Erpenbeck.

Additional information

Communicated by S. Uthicke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 31 kb)

Supplementary material 2 (PDF 928 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erpenbeck, D., Hooper, J.N.A., Bonnard, I. et al. Evolution, radiation and chemotaxonomy of Lamellodysidea, a demosponge genus with anti-plasmodial metabolites. Mar Biol 159, 1119–1127 (2012). https://doi.org/10.1007/s00227-012-1891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1891-z

Keywords

Navigation