Skip to main content

Advertisement

Log in

Elevated temperature impairs onset of symbiosis and reduces survivorship in larvae of the Hawaiian coral, Fungia scutaria

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Many corals obtain their obligate intracellular dinoflagellate symbionts from the environment as larvae or juveniles. The process of symbiont acquisition remains largely unexplored, especially under stress. This study addressed both the ability of Fungia scutaria (Lamarck 1801) larvae to establish symbiosis with Symbiodinium sp. C1f while exposed to elevated temperature and the survivorship of aposymbiotic and newly symbiotic larvae under these conditions. Larvae were exposed to 27, 29, or 31°C for 1 h prior to infection, throughout a 3-h infection period, and up to 72 h following infection. Exposure to elevated temperatures impaired the ability of coral larvae to establish symbiosis and reduced larval survivorship. At 31°C, the presence of symbionts further reduced larval survivorship. As sea surface temperatures rise, coral larvae exposed to elevated temperatures during symbiosis onset will likely be negatively impacted, which in turn could affect the establishment of future generations of corals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baird AH, Gilmour JP, Kamiki T, Nonaka M, Pratchett MS, Yamamoto HH, Yamasaki H (2006) Temperature tolerance of symbiotic and non-symbiotic coral larvae. Proc 10th Int Coral Reef Symp 1:38–42

    Google Scholar 

  • Baird AH, Cumbo VR, Leggat B, Rodriguez-Lanetty M (2007) Fidelity and flexibility in coral symbioses. Mar Ecol Prog Ser 347:307–309

    Article  Google Scholar 

  • Baird AH, Guest JR, Willis BL (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu Rev Ecol Evol Syst 40:551–571

    Article  Google Scholar 

  • Baird AH, Bhagooli R, Nonaka M, Yakovleva I, Yamamoto HH, Hidaka M, Yamasaki H (2010) Environmental controls on the establishment and development of algal symbiosis in corals. Proc 11th Int Coral Reef Symp 1:108–112 Session number 5

    Google Scholar 

  • Bassim K, Sammarco P (2003) Effects of temperature and ammonium on larval development and survivorship in a scleractinian coral (Diploria strigosa). Mar Biol 142:241–252

    CAS  Google Scholar 

  • Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortes J, Delbeek JC, DeVantier L, Edgar GJ, Edwards AJ, Fenner D, Guzman HM, Hoeksema BW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JEN, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563

    Article  CAS  Google Scholar 

  • Chen M, Cheng Y, Hong M, Fang L (2004) Molecular cloning of Rab5 (ApRab5) in Aiptasia pulchella and its retention in phagosomes harboring live zooxanthellae. Biochem Biophys Res Commun 324:1024–1033

    Article  CAS  Google Scholar 

  • Coffroth MA, Poland DM, Petrou EL, Brazeau DA, Holmberg JC (2010) Environmental symbiont acquisition may not be the solution to warming seas for reef-building corals. PLoS ONE 5:e13258

    Article  Google Scholar 

  • Coles S (1985) The effects of elevated temperature on reef coral planulae settlement as related to power plant entrainment. Proc 5th Int Coral Reef Symp 4:171–176

    Google Scholar 

  • Coles S, Brown B (2003) Coral bleaching—capacity for acclimatization and adaptation. Adv Mar Biol 46:183–223

    Article  CAS  Google Scholar 

  • Coles SL, Jokiel PL, Lewis CL (1976) Thermal tolerance in tropical versus subtropical Pacific reef corals. Pac Sci 30:159–166

    Google Scholar 

  • Colley NJ, Trench RK (1983) Selectivity in phagocytosis and persistence of symbiotic algae by the scyphistoma stage of the jellyfish Cassiopeia xamachana. Proc R Soc Lond B Biol Sci 219:61–82

    Article  Google Scholar 

  • Day T, Nagel L, van Oppen MH, Caley MJ (2008) Factors affecting the evolution of bleaching resistance in corals. Am Nat 171:E72–E88

    Article  Google Scholar 

  • Douglas AE (2003) Coral bleaching–how and why? Mar Pollut Bull 46:385–392

    Article  CAS  Google Scholar 

  • Douglas AE (2008) Conflict, cheats and the persistence of symbioses. New Phytol 177:849–858

    Article  Google Scholar 

  • Dubinsky Z (1990) Coral reefs. Elsevier, New York

    Google Scholar 

  • Dunn SR, Weis VM (2009) Apoptosis following post-phagocytic symbiont recognition in the coral, Fungia scutaria. Environ Microbiol 11:268–276

    Article  Google Scholar 

  • Edmondson CH (1929) Growth of Hawaiian corals. Bernice Bishop Mus Bull 58:1–38

    Google Scholar 

  • Edmunds PJ, Gates RD, Gleason DF (2001) The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar Biol 139:981–989

    Article  Google Scholar 

  • Edmunds PJ, Gates RD, Leggat W, Hoegh-Guldberg O, Allen-Requa L (2005) The effect of temperature on the size and population density of dinoflagellates in larvae of the reef coral Porites astreoides. Invertebr Biol 124:185–193

    Article  Google Scholar 

  • Fadlallah YH (1983) Sexual reproduction, development and larval biology in scleractinian corals. Coral Reefs 2:129–150

    Article  Google Scholar 

  • Ferrier-Pages C, Richard C, Forcioli D, Allemand D, Pichon M, Shick J (2007) Effects of temperature and UV radiation increases on the photosynthetic efficiency in four scleractinian coral species. Biol Bull 213:76–87

    Article  Google Scholar 

  • Fitt WK, Trench RK (1983) Endocytosis of the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal by endodermal cells of the scyphistomae of Cassiopeia xamachana and resistance of the algae to host digestion. J Cell Sci 64:195–212

    CAS  Google Scholar 

  • Furla P, Allemand D, Shick JM, Ferrier-Pages C, Richier S, Plantivaux A, Merle P-L, Tambutte S (2005) The symbiotic anthozoan: a physiological chimera between alga and animal. Integr Comp Biol 45:595–604

    Article  CAS  Google Scholar 

  • Glynn PW (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17

    Article  Google Scholar 

  • Goulet T (2006) Most corals may not change their symbionts. Mar Ecol Prog Ser 321:1–7

    Article  Google Scholar 

  • Harrison P, Wallace C (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Ecosystems of the World: coral reefs. Elsevier, New York, pp 133–207

    Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching, and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  Google Scholar 

  • Iglesias-Prieto R, Matta JL, Robins WA, Trench RK (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc Natl Acad Sci USA 89:10302–10305

    Article  CAS  Google Scholar 

  • Jokiel PL, Brown EK (2004) Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Global Change Biol 10:1627–1641

    Article  Google Scholar 

  • Jokiel PL, Coles SL (1977) Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar Biol 43:201–208

    Article  Google Scholar 

  • Jokiel PL, Coles SL (1990) Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8:155–162

    Article  Google Scholar 

  • Jokiel PL, Guinther EB (1978) Effects of temperature on reproduction in the hermatypic coral Pocillopora damicornis. Bull Mar Sci 28:786–789

    Google Scholar 

  • Jones R (2008) Coral bleaching, bleaching-induced mortality, and the adaptive significance of the bleaching response. Mar Biol 154:65–80

    Article  Google Scholar 

  • Karako-Lampert S, Katcoff DJ, Achituv Y, Dubinsky Z, Stambler N (2005) Responses of Symbiodinium microadriaticum clade B to different environmental conditions. J Exp Mar Biol Ecol 318:11–20

    Article  CAS  Google Scholar 

  • Krupp DA (1983) Sexual reproduction and early development of the solitary coral Fungia scutaria (Anthozoa: Scleractinia). Coral Reefs 2:159–164

    Article  Google Scholar 

  • Krupp D, Hollingsworth L, Peterka J (2006) Elevated temperature sensitivity of fertilization and early development in the mushroom coral Fungia scutaria Lamarck 1801. Proc 10th Int Coral Reef Symp 1:71–77

    Google Scholar 

  • LaJeunesse TC, Smith R, Walther M, Pinzón J, Pettay DT, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magaña AL, López Pérez A, Reyes-Bonilla H, Warner ME (2010) Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proc R Soc B 277:2925–2934

    Article  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  Google Scholar 

  • Machin D, Cheung YB, Parmar MKB (2006) Survival analysis: a practical approach, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Marlow HQ, Martindale MQ (2007) Embryonic development in two species of scleractinian coral embryos: Symbiodinium localization and mode of gastrulation. Evol Dev 9:355–367

    Article  Google Scholar 

  • Meehl G, Stocker T, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson I, Weaver A, Zhao Z (2007) Global climate projections. Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Munday P, Leis J, Lough J, Paris C, Kingsford M, Berumen M, Lambrechts J (2009) Climate change and coral reef connectivity. Coral Reefs 28:379–395

    Article  Google Scholar 

  • Muscatine L, Hand C (1958) Direct evidence for the transfer of materials from symbiotic algae to the tissues of a coelenterate. Proc Natl Acad Sci USA 44:1259–1263

    Article  CAS  Google Scholar 

  • Nozawa Y, Harrison P (2007) Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis. Mar Biol 152:1181–1185

    Article  Google Scholar 

  • Oliver TH, Leather SR, Cook JM (2009) Tolerance traits and the stability of mutualism. Oikos 118:346–352

    Article  Google Scholar 

  • Randall CJ, Szmant AM (2009a) Elevated temperature reduces survivorship and settlement of the larvae of the Caribbean scleractinian coral, Favia fragum (Esper). Coral Reefs 28:537–545

    Article  Google Scholar 

  • Randall CJ, Szmant AM (2009b) Elevated temperature affects development, survivorship, and settlement of the Elkhorn coral, Acropora palmata (Lamarck 1816). Biol Bull 217:269–282

    Google Scholar 

  • Richier S, Furla P, Plantivaux A, Merle P-L, Allemand D (2005) Symbiosis-induced adaptation to oxidative stress. J Exp Biol 208:277–285

    Article  Google Scholar 

  • Rodriguez-Lanetty M, Krupp DA, Weis VM (2004) Distinct ITS types of Symbiodinium in Clade C correlate with cnidarian/dinoflagellate specificity during onset of symbiosis. Mar Ecol Prog Ser 275:97–102

    Article  CAS  Google Scholar 

  • Rodriguez-Lanetty M, Wood-Charlson EM, Hollingsworth L, Krupp D, Weis V (2006) Temporal and spatial infection dynamics indicate recognition events in the early hours of a dinoflagellate/coral symbiosis. Mar Biol 149:713–719

    Article  Google Scholar 

  • Rodriguez-Lanetty M, Harii S, Hoegh-Guldberg O (2009) Early molecular responses of coral larvae to hyperthermal stress. Mol Ecol 18:5101–5114

    Article  CAS  Google Scholar 

  • Schwarz JA, Krupp DA, Weis VM (1999) Late larval development and onset of symbiosis in the scleractinian coral Fungia scutaria. Biol Bull 196:70–79

    Article  Google Scholar 

  • Stachowicz JJ (2001) Mutualism, facilitation, and the structure of ecological communities. Bioscience 51:235–246

    Article  Google Scholar 

  • Wakefield TS, Farmer MA, Kempf SC (2000) Revised description of the fine structure of in situ “zooxanthellae” genus Symbiodinium. Biol Bull 199:76–84

    Article  CAS  Google Scholar 

  • Weis VM (2008) Cellular mechanisms of cnidarian bleaching: stress causes the collapse of a symbiosis. J Exp Biol 211:3059–3066

    Article  CAS  Google Scholar 

  • Weis VM (2010) The susceptibility and resilience of corals to thermal stress: adaptation, acclimatization or both? Mol Ecol 19:1515–1517

    Article  Google Scholar 

  • Weis VM, Reynolds WS, deBoer MD, Krupp DA (2001) Host-symbiont specificity during onset of symbiosis between the dinoflagellates Symbiodinium spp. and planula larvae of the scleractinian coral Fungia scutaria. Coral Reefs 20:301–308

    Article  Google Scholar 

  • Wilson JR, Harrison PL (1997) Sexual reproduction in high latitude coral communities at the Solitary Islands, Eastern Australia. Proc 8th Int Coral Reef Symp 1:533–538

    Google Scholar 

  • Wood-Charlson EM, Hollingsworth LL, Krupp DA, Weis VM (2006) Lectin/glycan interactions play a role in recognition in a coral/dinoflagellate symbiosis. Cell Microbiol 8:1985–1993

    Article  CAS  Google Scholar 

  • Yakovleva IM, Baird AH, Yamamoto HH, Bhagooli R, Nonaka M, Hidaka M (2009) Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Mar Ecol Prog Ser 378:105–112

    Article  CAS  Google Scholar 

  • Yellowlees D, Rees TAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by a PADI Foundation grant; a Dr. Earl and Ethel Myers Oceanographic and Marine Biology Trust grant; and the Lerner-Gray Fund for Marine Research (American Museum of Natural History) to C.E. Schnitzler; and by National Science Foundation #IOS-0542452 and #IOS-0919073 to V.M. Weis. We thank Andrew Baird, Santiago Perez, Mauricio Rodriguez-Lanetty, and Cliff Ross and for helpful advice; Elisha Wood-Charlson, Jessi Kershner, and Olivier Detournay for assistance in the field; Jeremy Polk for help counting larvae; and Ruth Gates for generously providing equipment and space. This is Hawaii Institute of Marine Biology contribution # 1476.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Schnitzler.

Additional information

Communicated by M. Kühl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnitzler, C.E., Hollingsworth, L.L., Krupp, D.A. et al. Elevated temperature impairs onset of symbiosis and reduces survivorship in larvae of the Hawaiian coral, Fungia scutaria . Mar Biol 159, 633–642 (2012). https://doi.org/10.1007/s00227-011-1842-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1842-0

Keywords

Navigation