Skip to main content
Log in

Comparative study on the population genetics of the red algae Furcellaria lumbricalis occupying different salinity conditions

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Furcellaria lumbricalis is a red algae occurring in low salinity to fully marine conditions. Here, both putatively neutral and EST-derived microsatellite markers were developed and used to examine the genetic structure of northern European populations inhabiting different salinity conditions ranging from 35 to 3.6 psu. The amount of genetic variation did not differ between ocean and brackish populations, but differences were observed between marker types; EST-derived markers possessed less variation and showed greater differentiation than the putatively neutral microsatellites. No multicopy multilocus genotypes were detected despite expected asexuality in brackish populations. The Bayesian STRUCTURE analysis, when conducted for expressed marker data, indicated the presence of two main clusters, the Atlantic Ocean and Baltic Sea, while no clear structuring was observed based on putatively neutral microsatellites. The moderate level of genetic differentiation at neutral loci is probably due to genetic drift, a feasible explanation considering long distances between many populations, while the high level of differentiation in EST-linked markers reflects selection pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen BG, Borns HW (1994) The ice age world. Scandinavian Press, Oslo

    Google Scholar 

  • Andreakis N, Kooistra WH, Procaccini G (2007) Microsatellite markers in an invasive strain of Asparagopsis taxiformis (Bonnemaisoniales, Rhodophyta): insights in ploidy level and sexual reproduction. Gene 406:144–151

    Article  CAS  Google Scholar 

  • Arcot SS, Wang Z, Weber JL, Deininger PL, Batzer MA (1995) Alu repeats: a source for the genesis of primate microsatelites. Genomics 29:136–144

    Article  CAS  Google Scholar 

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton

    Google Scholar 

  • Austin AP (1960a) Life history and reproduction of Furcellaria fastigiata (L.) Lam. 1. The haploid plants and the development of the carposporophyte. Ann Bot 24:257–276

    Google Scholar 

  • Austin AP (1960b) Life history and reproduction in Furcellaria fastigiata (L.) Lam. 2. The tetrasporophyte and reduction division in the tetrasporangium. Ann Bot 24:296–312

    Google Scholar 

  • Bahri B, Leconte M, de Vallavieille-Pope C, Enjalbert J (2009) Isolation of ten microsatellite loci in an EST library of the phytopathogenic fungus Puccinia striiformis f.sp. tritici. Conserv Genet 10:1425–1428

    Article  CAS  Google Scholar 

  • Bengtsson BO (2003) Genetic variation in organisms with sexual and asexual reproduction. J Evol Biol 16:189–199

    Article  CAS  Google Scholar 

  • Bergström L, Tatarenkov A, Johannesson K, Jönsson RB, Kautsky L (2005) Genetic and morphological identification of Fucus radicans sp. nov. (Fucales, Phaeophyceae) in the brackish Baltic Sea. J Phycol 41:1025–1038

    Article  Google Scholar 

  • Bird NL, Saunders GW, McLachlan J (1991) Biology of Furcellaria lumbricalis (Huds.) Lamoroux (Rhodophyta: Gigartinales), a commercial carrageenophyte. J Appl Phycol 3:61–82

    Article  Google Scholar 

  • Björck S (1995) A review of the history of the Baltic Sea, 13.0–8.0 ka BP. Q Intern 27:19–40

    Article  Google Scholar 

  • Chabane K, Ablett G, Cordeiro G, Valkoun J, Henry R (2005) EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet Res Crop Evol 52:903–909

    Article  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  Google Scholar 

  • Coyer JA, Hoarau G, Pearson G, Mota C, Jüterbock A, Alpermann T, John U, Olsen JL (2011) Genomic scans detect signatures of selection along a salinity gradient in populations of the intertidal seaweed Fucus serratus on a 12 km scale. Mar Genomics 4:41–49

    Article  CAS  Google Scholar 

  • Dixon PS (1965) Perennation, vegetative propagation and algal life histories, with special reference to Asparagopsis and other Rhodophyta. Bot Gothoburg 3:67–74

    Google Scholar 

  • Eckert CG (2002) The loss of sex in clonal plants. Evol Ecol 15:501–520

    Article  Google Scholar 

  • Ellstrand NC, Roose ML (1987) Patterns of genotypic diversity in clonal plant species. Am J Bot 74:123–131

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Excoffier L, Guillaume L, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50

    CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  Google Scholar 

  • Guillemin M-L, Destombe C, Faugeron S, Correa JA, Valero M (2005) Development of microsatellite DNA markers in the cultivated seaweed, Gracilaria chilensis (Gracilariales, Rhodophyta). Mol Ecol Notes 5:155–157

    Article  CAS  Google Scholar 

  • Hammock EA, Young LJ (2004) Functional microsatellite polymorphism associated with divergent social structure in vole species. Mol Biol Evol 21:1057–1063

    Article  CAS  Google Scholar 

  • Hancock JM (1999) Microsatellites and other simple sequences: genomic context and mutational mechanisms. In: Goldstein DB, Schlötterer C (eds) Microsatellites, evolution and applications. Oxford University Press, Oxford, pp 1–9

    Google Scholar 

  • Hawkes MW (1990) Reproductive strategies. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, Cambridge, pp 305–347

    Google Scholar 

  • Hebert PDN (1987) Genotypic characteristics of cyclic parthenogens and their obligately asexual derivatives. In: Stearns SC (ed) The evolution of sex and its consequences. Birkhäuser, Basel, pp 175–195

    Google Scholar 

  • Holmsgaard MH, Greenwell M, McLachlan J (1981) Biomass and vertical distribution of Furcellaria lumbricalis and associated algae. Proc Intern Seaweed Symp 10:309–314

    Google Scholar 

  • Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    CAS  Google Scholar 

  • Korpelainen H, Kostamo K, Virtanen V (2007) Microsatellite marker identification using genome screening and restriction-ligation. Biotechniques 42:479–486

    Article  CAS  Google Scholar 

  • Kostamo K, Mäkinen A (2006) Observations on the mode and seasonality of reproduction in Furcellaria lumbricalis (Gigatinales, Rhodophyta) populations in the northern Baltic Sea. Bot Mar 49:304–309

    Article  Google Scholar 

  • Kostamo K, Olsson S, Korpelainen H (2011) Search for stress-responsive genes in the red algae Furcellaria lumbricalis (Rhodophyta) by expressed sequence analysis. J Exp Mar Biol Ecol 404:21–25

    Article  CAS  Google Scholar 

  • Levring T (1940) Studier über die Algenvegetation von Blekinge, Südschweden. Ph.D. thesis, University of Lund (in German)

  • Liu F, Wang X, Yao J, Fu W, Duan D (2010) Development of expressed sequence tag derived microsatellite markers for Saccharina (Laminaria) japonica. J Appl Phycol 22:109–111

    Article  CAS  Google Scholar 

  • Luikart G, Allendorf FW, Piry S, Cornuet JM (1998) Molecular genetic test identifies endangered populations. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Luo H, Mörchen M, Engel CR, Destombe C, Epplen JT, Saumitou-Laprade P, Valero M (1999) Characterization of microsatellite markers in the red algae Gracilaria gracilis. Mol Ecol 8:700–702

    CAS  Google Scholar 

  • Maggs CA (1998) Life history variation in Dasya ocellata (Dasyaceae, Rhodophyta). Phycologia 37:100–105

    Article  Google Scholar 

  • Mäkinen A, Kääriä J, Rajasilta M (1988) Factors controlling the occurrence of Furcellaria lumbricalis (Huds.) Lamour. and Phyllophora truncata (Pallas) Zinova in the upper littoral of the archipelago of SW Finland. Kieler Meeresf Sonderheft 6:1404–1446

    Google Scholar 

  • Middleboe AL, Sand-Jensen K, Brodersen K (1997) Patterns for macroalgal distribution in the Kattegatt-Baltic region. Phycologia 36:208–219

    Article  Google Scholar 

  • Oetjen K, Ferber S, Dankert I, Reusch TBH (2010) New evidence for habitat-speciWc selection in Wadden Sea Zostera marina populations revealed by genome scanning using SNP and microsatellite markers. Mar Biol 157:81–89

    Article  CAS  Google Scholar 

  • Park SDE (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. Ph.D. thesis, University of Dublin

  • Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Pritchard JK, Wen W, Falush D (2007) Documentation for STRUCTURE software version 2.2. http://pritch.bsd.uchicago.edu

  • Rosenvinge LK (1917) The marine algae of Denmark. Contributions to their natural history II. Rhodophyceae II (Cryptonemiales). Kongelige Danske Videnskabernes Selskab Skr. 7

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Meth Mol Biol 132:365–386

    CAS  Google Scholar 

  • Schwenke H (1971) Water movements 5.2. Plants. In: Kinne O (ed) Marine ecology I. Environmental factors. Wiley-Interscience, London, pp 1091–1121

    Google Scholar 

  • Stenberg P, Lundmark M, Saura A (2003) MLGsim: a program for detecting clones using a simulation approach. Mol Ecol Notes 3:329–331

    Article  CAS  Google Scholar 

  • Svedelius N (1901) Studier öfver Östersjöns hafsalgflora. Ph.D. thesis, University of Uppsala (in Swedish)

  • Tatarenkov A, Bergström L, Jönsson RB, Serrão EA, Kautsky L, Johannesson K (2005) Intriguing asexual life in marginal populations of the brown seaweed Fucus vesiculosus. Mol Ecol 14:647–651

    Article  CAS  Google Scholar 

  • Taylor ARA (1975) The Chondrus crispusFurcellaria fastigiata community at Campbell’s Cove, Prince Edward Island. Technical report series 88, Industry Development Branch, Fisheries and Marine Services, Environment Canada, Ottawa

  • Valle G (1993) TA-repeat microsatellites are closely associated with ARS consensus sequences in yeast chromosome III. Yeast 9:753–759

    Article  CAS  Google Scholar 

  • Vasemägi A, Nilsson J, Primmer CR (2005) Expressed sequence tag-linked microsatellites as a source of geen-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). Mol Biol Evol 22:1067–1076

    Article  Google Scholar 

  • Vitalis R, Dawson K, Boursot P (2001) Interpretation of variation across marker loci as evidence of selection. Genetics 158:1811–1823

    CAS  Google Scholar 

  • Wærn M (1952) Rocky-shore algae in the Öregrund Archipelago. Acta Phytogeogr Suecia 30:1–298

    Google Scholar 

  • Wattier R, Maggs C (2001) Intraspecific variation in seaweeds: the application of new tools and approaches. Adv Bot Res 35:171–212

    Article  Google Scholar 

  • Wattier R, Dallas JF, Destombe C, Saumitou-Laprade P, Valero M (1997) Single locus microsatellites in Gracilariales (Rhodophyta): high level of genetic variability within Gracilaria gracilis and conservation in related species. J Phycol 33:868–880

    Article  CAS  Google Scholar 

  • Wilder J, Hollocher H (2001) Mobile elements and the genesis of microsatellites in dipterans. Mol Biol Evol 18:384–392

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Kerstin Johannesson, Christine Maggs, and Robin Svensson for their help in providing some of the study material. Marja Isojärvi and Marjo Kilpinen are thanked for assistance in the laboratory work. The study was funded by grants from the Academy of Finland (grant to HK, project number 1115244), Jenny and Antti Wihuri Foundation (grant to KK), and Kone Foundation (grants to KK and SO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Korpelainen.

Additional information

Communicated by T. Reusch.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostamo, K., Korpelainen, H. & Olsson, S. Comparative study on the population genetics of the red algae Furcellaria lumbricalis occupying different salinity conditions. Mar Biol 159, 561–571 (2012). https://doi.org/10.1007/s00227-011-1835-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1835-z

Keywords

Navigation