Skip to main content
Log in

Growth dynamics of the seagrass Halophila nipponica, recently discovered in temperate coastal waters of the Korean peninsula

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Seagrass species in the genus Halophila are usually distributed in tropical or subtropical areas, but a Halophila species identified as H. nipponica was first observed in temperate coastal regions of Korea in 2007. Since this species mainly occurs in warm temperate regions influenced by warm currents, we hypothesized that H. nipponica may exhibit different growth patterns from those of other temperate seagrass species in Korea, instead showing similar growth dynamics to tropical/subtropical species. The growth and morphology of H. nipponica in relation to coincident measurements of environmental factors were investigated from July 2008 to September 2009 to examine the growth dynamics of this species. Water temperature at the study site ranged from 9.7°C in January to 25.1°C in August. Shoot density, biomass, and productivity exhibited significant seasonal variation, increasing during summer and decreasing during winter. Productivity was severely restricted to nearly ceasing at water temperatures less than 15°C, and winter minimum growth lasted until May. The optimal temperature for H. nipponica growth was approximately 25°C, which was the maximum water temperature at the study site, and no growth reduction in high summer water temperature was observed. Thus, H. nipponica on the temperate coast of Korea exhibited a distinctly different growth pattern from those of temperate seagrass species in Korea, which have shown great reductions in growth at water temperatures higher than 20°C. Higher below- to above-ground ratio and leaf burial into sediments with shorter leaf petioles during winter might be overwintering strategies in this species. The growth patterns of H. nipponica at the study site imply that this species still possess the tropical characteristics of the genus Halophila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Beer S, Waisel Y (1982) Effects of light and pressure on photosynthesis in two seagrasses. Aquat Bot 13:331–337

    Article  Google Scholar 

  • Beer S, Mtolera M, Lyimo T, Björk M (2006) The photosynthetic performance of the tropical seagrass Halophila ovalis in the upper intertidal. Aquat Bot 84:367–371

    Article  CAS  Google Scholar 

  • Brian JA, Paul EK, Colin GNT (1999) Plants in action: adaptation in nature. Performance in cultivation. Macmillan, Melbourne

    Google Scholar 

  • Brouns JJWM (1987a) Growth patterns in some Indo-West-Pacific seagrasses. Aquat Bot 28:39–61

    Article  Google Scholar 

  • Brouns JJWM (1987b) Quantitative and dynamic aspects of mixed seagrass meadow in Papua New Guinea. Aquat Bot 29:33–47

    Article  Google Scholar 

  • Bulthuis DA (1983) Effects of temperature on the photosynthesis-irradiance curve of the Australian seagrass, Heterozostera tasmanica. Mar Biol Lett 4:47–57

    Google Scholar 

  • Cho Y-K, Kim T-W, You K-W, Park L-H, Moon H-T, Lee S-H, Youn Y-H (2005) Temporal and spatial variabilities in the sediment temperature on the Baeksu tidal flat, Korea. Estuarine Coastal Shelf Sci 65:302–308

    Article  Google Scholar 

  • Connell EL, Walker DI (2001) Nutrient cycling associated with the seagrass Halophila ovalis in the Swan-Canning Estuary based on seasonal variations in biomass and tissue nutrients. Hydrol Process 15:2401–2409

    Article  Google Scholar 

  • den Hartog C, Kuo J (2006) Taxonomy and biogeography of seagrasses. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 1–23

    Chapter  Google Scholar 

  • Dennison WC (1987) Effects of light on seagrass photosynthesis, growth and depth distribution. Aquat Bot 27:15–26

    Article  Google Scholar 

  • Dennison WC, Orth RJ, Moore KA, Stevenson JC, Carter V, Kollar S, Bergstrom PW, Batiuk RA (1993) Assessing water quality with submersed aquatic vegetation. Bioscience 43(2):86–94

    Article  Google Scholar 

  • Duarte CM (1991) Seagrass depth limits. Aquat Bot 40:363–373

    Article  Google Scholar 

  • Erftemeijer PLA, Stapel J (1999) Primary productivity of deep-water Halophila ovalis meadows. Aquat Bot 65:71–82

    Article  Google Scholar 

  • Evans AS, Webb KL, Penhale PA (1986) Photosynthetic temperature acclimation in two coexisting seagrass, Zostera marina L. and Ruppia maritima L. Aquat Bot 24:185–197

    Article  Google Scholar 

  • Goldstein G, Meinzer F (1983) Influence of insulating dead leaves and low temperatures on water balance in an Andean giant rosette phase. Plant Cell Environ 6:649–656

    Google Scholar 

  • Green EP, Short FT (2003) World atlas of seagrasses. University of California Press, Berkeley

    Google Scholar 

  • Hammerstrom KK, Kenworthy WJ, Fonseca MS, Whitfield PE (2006) Seed bank, biomass, and productivity of Halophila decipiens, a deep water seagrass on the west Florida continental shelf. Aquat Bot 84:110–120

    Article  Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber SC, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241

    Article  Google Scholar 

  • Herbert DA (1986) The growth dynamics of Halophila hawaiiana. Aquat Bot 23:351–360

    Article  Google Scholar 

  • Herzka SZ, Dunton KH (1998) Light and carbon balance in the seagrass Thalassia testudinum: evaluation of current production models. Mar Biol 132:711–721

    Article  Google Scholar 

  • Hillman K, McComb AJ, Walker DI (1995) The distribution, biomass and primary productivity of the seagrass Halophila ovalis in the Swan/Canning Estuary, Western Australia. Aquat Bot 51:1–54

    Article  Google Scholar 

  • Hulings NC (1979) The ecology, biometery and biomass of the seagrass Halophila stipulacea along the Jordanian coast of the Gulf of Aqaba. Bot Mar 22:425–430

    Article  Google Scholar 

  • Huong TTL, Vermaat JE, Terados J, Tien NV, Duarte CM, Borum J, Tri NH (2003) Seasonality and depth zonation of intertidal Halophila ovalis and Zostera japonica in Ha Long Bay (northern Vietnam). Aquat Bot 75:147–157

    Article  Google Scholar 

  • Josselyn M, Fonseca M, Niesen T, Larson R (1986) Biomass, productivity and decomposition of a deep water seagrass, Halophila decipiens Ostenf. Aquat Bot 25:47–61

    Article  Google Scholar 

  • Jupp BP, Durako MJ, Kenworthy WJ, Thayer GW, Schillak L (1996) Distribution, abundance, and species composition of seagrasses at several sites in Oman. Aquat Bot 53:199–213

    Article  Google Scholar 

  • Kaldy JE, Dunton KH (2000) Above- and below-ground production, biomass and reproductive ecology of Thalassia testudinum (turtle grass) in a subtropical coastal lagoon. Mar Ecol Progress Ser 193:271–283

    Article  CAS  Google Scholar 

  • Kaldy JE, Lee K-S (2007) Factor controlling Zostera marina L. growth in the eastern and western Pacific Ocean: Comparisons between Korea and Oregon, USA. Aquat Bot 87:116–126

    Article  Google Scholar 

  • Karagatzides JD, Huthinson I (1991) Intraspecific comparisons of biomass dynamics in Scirpus americanus and Scirpus maritimus on the Fraser river delta. J Ecol 79:459–476

    Article  Google Scholar 

  • Kenworthy WJ, Zieman JC, Thayer GW (1982) Evidence for the influence of seagrasses on the benthic nitrogen cycle in a coastal plain estuary near Beaufort, North Carolina (USA). Oecologia 54:152–158

    Article  Google Scholar 

  • Kenworthy WJ, Currin CA, Fonseca MS, Smith G (1989) Productivity, decomposition, and heterotrophic utilization of the seagrass Halophila decipiens in a submarine canyon. Mar Ecol Progress Ser 51:277–290

    Article  Google Scholar 

  • Kenworthy WJ, Durako MJ, Fatemy SMR, Valavi H, Thayer GW (1993) Ecology of seagrasses in northeastern Saudi Arabia one year after the Gulf War oil spill. Mar Pollut Bull 27:213–222

    Article  Google Scholar 

  • Kim JB, Park J-I, Jung C-S, Lee P-Y, Lee K-S (2009) Distributional range extension of the seagrass Halophila nipponica into coastal waters off the Korean peninsula. Aquat Bot 90:269–272

    Article  Google Scholar 

  • Kowalski JL, DeYoe HR, Allison TC (2009) Seasonal production and biomass of the seagrass, Halodule wrightii Aschers. (shoal grass), in a subtropical Texas lagoon. Estuar Coast 32:467–482

    Article  Google Scholar 

  • Kuo J, Kirkman H (1995) Halophila decipiens Ostenfield in estuaries of southwestern Australia. Aquat Bot 51:335–340

    Article  Google Scholar 

  • Kuo J, Kanamoto Z, Iizumi H, Aio K, Mukai H (2006a) Seagrassess from the Nansei Islands, Southern Japanese Archipelago: species composition, distribution and biogeography. Mar Ecol 27:290–298

    Article  Google Scholar 

  • Kuo J, Kanamoto Z, Iizumi H, Aio K, Mukai H (2006b) Seagrasses of the genus Halophila Thouars (Hydrocharitaceae) from Japan. Acta Phytotax Geobot 57(2):129–154

    Google Scholar 

  • Lee K-S, Dunton KH (1996) Productivity and carbon reserve dynamics of the seagrass Thalassia testudinum in corpus Christi Bay, Texas, USA. Mar Ecol Progress Ser 143:201–210

    Article  Google Scholar 

  • Lee K-S, Lee SY (2003) The seagrasses of the Republic of Korea. In: Green EP, Short FT, Spalding MD (eds) World atlas of seagrasses: present status and future conservation. University of California Press, Berkeley, pp 193–198

    Google Scholar 

  • Lee K-S, Park SR, Kim J-B (2005) Productivity dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula. Mar Biol 147:1091–1108

    Article  Google Scholar 

  • Lee K-S, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J Exp Mar Biol Ecol 350:144–175

    Article  Google Scholar 

  • Lipkin Y (1979) Quantitative aspects of seagrass communities particularly those dominated by Halophila stipulacea, in Sinai (northern Red Sea). Aquat Bot 7:119–128

    Article  Google Scholar 

  • Marsh JA Jr, Dennison WC, Alberte RS (1986) Effects of temperature on photosynthesis and respiration in eelgrass (Zostera marina L.). J Exp Mar Biol Ecol 350:144–175

    Google Scholar 

  • McMillan C (1979) Differentiation in response to chilling temperatures among populations of three marine spermatophytes, Thalassia testudinum, Syringodium filiforme and Halodule wrightii. Am J Bot 66(7):810–819

    Article  Google Scholar 

  • Nakaoka M, Aioi K (1999) Growth of seagrass Halophila ovalis at dugong trails compared to existing within-patch variation in a Thailand intertidal flat. Mar Ecol Progress Ser 184:97–103

    Article  Google Scholar 

  • Occhipinti-Ambrogi A (2007) Global change and marine communities: alien species and climate change. Mar Pollut Bull 55:342–352

    Article  CAS  Google Scholar 

  • Ogden JC, Ogden NB (1982) A preliminary study of two representative seagrass communities in Palau, West Caroline Islands (Micronesia). Aquat Bot 12:229–244

    Article  Google Scholar 

  • Park J-I, Lee K-S (2009) Peculiar growth dynamics of the surfgrass Phyllospadix japonicus on the southeastern coast of Korea. Mar Biol 156:2221–2233

    Article  Google Scholar 

  • Park SR, Kim J-H, Kang C-K, An S, Chung IK, Kim JH, Lee K-S (2009) Current status and ecological roles of Zostera marina after recovery from large-scale reclamation in the Nakdong River estuary, Korea. Estuarine Coastal Shelf Sci 81:38–48

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergammon Press, New York

    Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915

    Article  CAS  Google Scholar 

  • Phillips RC, McMillan C, Bridges KW (1983) Phenology of eelgrass, Zostera marina L., along latitudinal gradients on North America. Aquat Bot 15:145–156

    Article  Google Scholar 

  • Precht WF, Aronson RB (2004) Climate flickers and range shifts of reef corals. Front Ecol Environ 2:307–314

    Article  Google Scholar 

  • Preen A (1995) Impacts of dugong foraging on seagrass habitats: observational and experimental evidence for cultivation grazing. Mar Ecol Progress Ser 124:201–213

    Article  Google Scholar 

  • Santamaría-Gallegos NA, Riosmena-Rodríguez R, Sánchez-Lizaso JL (2006) Occurrence and seasonality of Halophila decipiens Ostenfeld in the Gulf of California. Aquat Bot 84:363–366

    Article  Google Scholar 

  • Short FT, Neckles HA (1999) The effects of global climate change on seagrasses. Aquat Bot 63:169–196

    Article  Google Scholar 

  • Short FT, Fernandez E, Vernon A, Gaeckle JL (2006) Occurrence of Halophila baillonii meadows in Belize, Central America. Aquat Bot 85:249–251

    Article  Google Scholar 

  • Short FT, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol 350:3–20

    Article  Google Scholar 

  • Uchimura M, Faye EJ, Shimada S, Arai S, Inoue T, Nakamura Y (2008) A reassessment of Halophila species (Hydrocharitaceae) diversity with special reference to Japanese representatives. Bot Mar 51:258–268

    Article  Google Scholar 

  • Vermaat JE, Agawin NSR, Duarte CM, Fortes MD, Marba N, Uri JS (1995) Meadow maintenance, growth and productivity of a mixed Philippine seagrass bed. Mar Ecol Progress Ser 124:215–225

    Article  Google Scholar 

  • Virnstein RW, Hall LM (2009) Northern range extension of the seagrass Halophila johnsonii and Halophila decipiens along the east coast of Florida, USA. Aquat Bot 90:89–92

    Article  Google Scholar 

  • Walker DI, Prince RT (1987) Distribution and biogeography of seagrass species on the northwest coast of Australia. Aquat Bot 29:19–32

    Article  Google Scholar 

  • Willette DA, Ambrose RF (2009) The distribution and expansion of the invasive seagrass Halophila stipulacea in Dominica, West Indies, with a preliminary report from St. Lucia. Aquat Bot 91:137–142

    Article  Google Scholar 

  • Williams S (2007) Introduced species in seagrass ecosystems: status and concerns. J Exp Mar Biol Ecol 350:89–110

    Article  Google Scholar 

  • Wilson B (1988) A review of evidence on the control of shoot:root ratio, in relation to models. Ann Bot 61:433–449

    Google Scholar 

  • Yamano H, Sugihara, Nomura K (2011) Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys Res Lett. doi:10.1029/2010GL046474

  • Zacherl D, Gaines SD, Lonhart SI (2003) The limits to biogeographical distributions: insights from the northward range extension of the marine snail, Kelletia kelletia (Forbes, 1985). J Biogeogr 30:913–924

    Article  Google Scholar 

Download references

Acknowledgments

We thank JH Kim, JW Kim, and JI Park for their countless hours of field and laboratory assistances. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-314-C00318) and the Ministry of Land, Transport and Maritime Affairs, Korea (Project title: Long-term change of structure and function in marine ecosystems of Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Seop Lee.

Additional information

Communicated by F. Bulleri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Kim, Y.K., Park, S.R. et al. Growth dynamics of the seagrass Halophila nipponica, recently discovered in temperate coastal waters of the Korean peninsula. Mar Biol 159, 255–267 (2012). https://doi.org/10.1007/s00227-011-1804-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1804-6

Keywords

Navigation