Skip to main content
Log in

Predicting fish diet composition using a bagged classification tree approach: a case study using yellowfin tuna (Thunnus albacares)

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

We provided a classification tree modeling framework for investigating complex feeding relationships and illustrated the method using stomach contents data for yellowfin tuna (Thunnus albacares) collected by longline fishing gear deployed off eastern Australia between 1992 and 2006. The non-parametric method is both exploratory and predictive, can be applied to varying size datasets and therefore is not restricted to a minimum sample size. The method uses a bootstrap approach to provide standard errors of predicted prey proportions, variable importance measures to highlight important variables and partial dependence plots to explore the relationships between explanatory variables and predicted prey composition. Our results supported previous studies of yellowfin tuna feeding ecology in the region. However, the method provided a number of novel insights. For example, significant differences were noted in the prey of yellowfin tuna sampled north of 20°S in summer where oligotrophic waters dominate. The analysis also identified that sea-surface temperature, latitude and yellowfin size were the most important variables associated with dietary differences. The methodology is appropriate for delineating ecosystem-level trophic dynamics, as it can easily incorporate large datasets comprising multiple predators to explore trophic interactions among members of a community. Broad-scale relationships among explanatory variables (environmental, biological, temporal and spatial) and prey composition elucidated by this method then serve to focus and lend validity to subsequent fine-scale analyses of important parameters using standard diet methods and chemical tracers such as stable isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker R, Sheaves M (2005) Redefining the piscivore assemblage of shallow estuarine nursery habitats. Mar Ecol Prog Ser 291:197–213. doi:10.3354/meps291197

    Article  Google Scholar 

  • Becker RA, Wilks AR, Brownrigg R, Minka TP (2010) Maps: draw geographical maps. R package version 2.1-6, http://CRAN.R-project.org/package=maps. Accessed 30 Aug 2011

  • Breiman L (1996) Bagging predictors. Mach Learn 24:123–140. doi:10.1023/A:1018054314350

    Google Scholar 

  • Breiman L (1998) Arcing classifiers (with discussion). Ann Stat 26:801–824. doi:10.2307/120055

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32. doi:10.1023/A:1010933404324

    Article  Google Scholar 

  • Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. Wadsworth, California

    Google Scholar 

  • Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. doi:10.1126/science.1206432

    Article  CAS  Google Scholar 

  • Chipps SR, Garvey JE (2007) Assessment of diets and feeding patterns. In: Guy CS, Brown ML (eds) Analysis and interpretation of freshwater fisheries data. American Fisheries Society, Maryland, pp 473–514

    Google Scholar 

  • Christensen V, Walters CJ (2004) Ecopath with ecosim: methods, capabilities and limitations. Ecol Model 172:109–139. doi:10.1016/j.ecolmodel.2003.09.003

    Article  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Kauffman M (ed) Machine learning: proceedings of the thirteenth international conference, San Francisco, pp 148–156

  • Fulton EA, Smith ADM, Smith DC (2007) Alternative management strategies for southeast Australian commonwealth fisheries: stage 2: quantitative management strategy evaluation. CSIRO Marine and Atmospheric Research, Hobart

    Google Scholar 

  • Griffiths SP, Fry GC, Manson FJ, Pillans RD (2007) Feeding dynamics, consumption rates and daily ration of longtail tuna (Thunnus tonggol) in Australian waters, with emphasis on the consumption of commercially important prawns. Mar Freshw Res 58:376–397. doi:10.1071/MF06197

    Article  Google Scholar 

  • Griffiths SP, Kuhnert PM, Fry GF, Manson FJ (2009) Temporal and size-related variation in the diet, consumption rate and daily ration of mackerel tuna (Euthynnus affinis) in neritic waters of eastern Australia. ICES J Mar Sci 66:720–733. doi:10.1093/icesjms/fsp065

    Article  Google Scholar 

  • Griffiths SP, Young JW, Lansdell JW, Campbell RA, Hampton J, Hoyle SD, Langley A, Bromhead D, Hinton MG (2010) Ecological effects of longline fishing and climate change on the pelagic ecosystem off eastern Australia. Rev Fish Biol Fish 20:239–272. doi:10.1007/s11160-009-9157-7

    Article  Google Scholar 

  • Hall P (1985) Resampling a coverage pattern. Stoch Proc Appl 20:231–246

    Article  Google Scholar 

  • Hartog J, Hobday AJ, Matear R, Feng M (2011) Habitat overlap of southern bluefin tuna and yellowfin tuna in the east coast longline fishery—implications for present and future spatial management. Deep Sea Res II 58:746–752. doi:10.1016/j.dsr2.2010.06.005

    Article  Google Scholar 

  • Hobday AJ, Hartmann K, Hartog J, Bestley S (2006) SDODE: spatial dynamics ocean data explorer, user guide. CSIRO Marine and Atmospheric Research, Hobart

    Google Scholar 

  • Koenker RW, Bassett GW (1978) Regression quantiles. Econometrica 46:33–50

    Article  Google Scholar 

  • Kuhnert PM, Mengersen K (2003) Reliability measures for local nodes assessment in classification trees. J Comput Graph Stat 12:398–416. doi:10.1198/1061860031734

    Article  Google Scholar 

  • Kuhnert PM, Kinsey-Henderson A, Bartley R, Herr A (2010) Incorporating uncertainty in gully erosion calculations using the random forests modelling approach. Environmetrics 21:493–509. doi:10.1002/env.999

    Google Scholar 

  • Logan JM, Rodriguez-Marin E, Goñi N, Barreiro S, Arrizabalaga H, Golet W, Lutcavage M (2011) Diet of young Atlantic bluefin tuna (Thunnus thynnus) in eastern and western Atlantic foraging grounds. Mar Biol 158:73–85. doi:10.1007/s00227-010-1543-0

    Article  Google Scholar 

  • Marasco RJ, Goodman D, Grimes CB, Lawson PW, Punt AE, Quinn TJI (2007) Ecosystem-based fisheries management: some practical suggestions. Can J Fish Aquat Sci 64:928–939. doi:10.1139/F07-062

    Article  Google Scholar 

  • Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic, London

    Google Scholar 

  • McCullagh P, Nelder JA (1983) Generalized linear models. Chapman and Hall, London

    Google Scholar 

  • McCulloch CE, Searle SR (2001) Generalized linear and mixed models. Wiley, New York

    Google Scholar 

  • Ménard F, Labrune C, Shin Y-J, Asine A-S, Bard F-X (2006) Opportunistic predation in tuna: a size-based approach. Mar Ecol Prog Ser 323:223–231. doi:10.3354/meps323223

    Article  Google Scholar 

  • Olson RJ, Galván-Magaña F (2002) Food habits and consumption rates of common dolphinfish (Coryphaena hippurus) in the eastern Pacific Ocean. U.S. National Marine Fisheries Service. Fish Bull 100:279–298

    Google Scholar 

  • Olson RJ, Watters GM (2003) A model of the pelagic ecosystem in the eastern tropical Pacific Ocean. Inter Am Trop Tuna Comm Bull 22:133–218

    Google Scholar 

  • Pikitch EK, Santora C, Babcock EA, Bakun A, Bonfil R, Conover DO, Dayton P, Doukakis P, Fluharty D, Heneman B, Houde ED, Link J, Livingston PA, Mangel M, McAllister MK, Pope J, Sainsbury KJ (2004) Ecosystem-based fishery management. Science 305:346–347. doi:10.1126/science.1098222

    Article  CAS  Google Scholar 

  • Polovina JJ, Dunne JP, Woodworth PA, Howell EA (2011) Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming. ICES J Mar Sci. doi:10.1093/icesjms/fsq198

  • Potier M, Marsac F, Cherel Y, Lucas V, Sabatie R, Maury O, Ménard F (2007) Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean. Fish Res 83:60–72. doi:10.1016/j.fishres.2006.08.020

    Article  Google Scholar 

  • Ridgway KR (2007) Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys Res Lett 34:L13613. doi:10.1029/2007GL030393

    Article  Google Scholar 

  • Scharf FS, Juanes F, Sutherland M (1998) Inferring ecological relationships from the edges of scatter diagrams: comparison of regression techniques. Ecology 79:448–460

    Article  Google Scholar 

  • R Development Core Team (2005) R: a language and environment for statistical computing, reference index version 2.13.1. R Foundation for Statistical Computing. http://www.R-project.org. Accessed 30 Aug 2011

  • Therneau TM, Atkinson B, R port by Brian Ripley (2009) RPART: recursive partitioning. R package version 3.1-50. http://CRAN.R-project.org/package=rpart. Accessed 30 Aug 2011

  • Young JW, Lamb TD, Bradford R, Clementson LA, Kloser RJ, Galea H (2001) Yellowfin tuna (Thunnus albacares) aggregations along the shelfbreak of southeastern Australia: links between inshore and offshore processes. Mar Freshwater Res 52. doi:10.1071/MF99168

  • Young JW, Lansdell JW, Riddoch S, Revill A (2006) Feeding ecology of broadbill swordfish, Xiphias gladius (Linnaeus, 1758), off eastern Australia in relation to physical and environmental variables. B Mar Sci 79:793–811

    Google Scholar 

  • Young JW, Lansdell MJ, Campbell RA, Cooper SP, Juanes F, Guest MA (2010) Feeding ecology and niche segregation in oceanic top predators off eastern Australia. Mar Biol 157:2347–2368. doi:10.1007/s002227-010-1500-y

    Article  Google Scholar 

  • Young JW, Hobday AJ, Campbell RA, Kloser RJ, Bonham PI, Clementson LA, Lansdell MJ (2011) The biological oceanography of the East Australian Current and surrounding waters in relation to tuna and billfish catches off eastern Australia. Deep-Sea Res II 58:720–733. doi:10.1016/j.dsr2.2010.10.005

    Article  CAS  Google Scholar 

  • Zuur AF, Leno EN, Smith GM (2007) Analysing ecological data. Springer, New York

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Ross Sparks and the three anonymous reviewers who kindly reviewed this manuscript. We acknowledge Alexandre Aires-da-Silva for making the R code and resources available for producing the maps in this paper. We thank Christine Patnode for assistance with the graphics. We thank skippers from the Eastern Tuna and Billfish fishery for help in collecting the yellowfin samples, Matt Lansdell and S. Ridoch (CSIRO) for taxonomic support and Scott Cooper (CSIRO) for structuring the database that housed this information. We thank Alistair Hobday, Klaus Hartman, Jason Hartog and Sophie Bestley for developing and making available the SDODE interface for exploring global datasets. Finally, we acknowledge the funding support from CSIRO through the Julius Award that was granted to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra M. Kuhnert.

Additional information

Communicated by M. A. Peck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhnert, P.M., Duffy, L.M., Young, J.W. et al. Predicting fish diet composition using a bagged classification tree approach: a case study using yellowfin tuna (Thunnus albacares). Mar Biol 159, 87–100 (2012). https://doi.org/10.1007/s00227-011-1792-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1792-6

Keywords

Navigation