Skip to main content

Advertisement

Log in

Prey selection in Octopus rubescens: possible roles of energy budgeting and prey nutritional composition

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This study explores the relationship between energy budgeting and prey choice of Octopus rubescens. Seventeen male Octopus rubescens were collected between June 2006 and August 2007 from Admiralty Bay, Washington. Prey choices made by individuals in the laboratory deviated widely from those expected from a simple optimal foraging model. O. rubescens chose the crab Hemigrapsus nudus over the clam Nuttallia obscurata as prey by a ratio of 3:1, even though prey energy content and handling times suggested that this octopus could obtain 10 times more energy intake per unit time when choosing the latter compared to the former prey species. Octopus energy budgets were similar when consuming either of the prey species except for lipid extraction efficiency that was significantly higher in octopuses consuming H. nudus. This suggests that lipid digestibility may play an important role in the prey choice of O. rubescens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ainley DG, Spear LB, Allen SG, Ribic CA (1996) Temporal and spatial patterns in the diet of the common murre in California waters. Condor 98:691–705

    Article  Google Scholar 

  • Ambrose RF (1984) Food preferences, prey availability, and the diet of Octopus bimaculatus Verrill. J Exp Mar Biol Ecol 77:29–44

    Article  Google Scholar 

  • Anderson RC (1991) The fish-catching ability of Octopus dofleini. J Cephalop Biol 2:75–76

    Google Scholar 

  • Anderson RC, Mather JA (2007) The packaging problem: bivalve prey selection and prey entry techniques of the octopus Enteroctopus dofleini. J Comp Psychol 121:300–305. doi:10.1037/0735-7036.121.3.300

    Article  Google Scholar 

  • Anderson RC, Hughes PD, Mather JA, Steele CW (1999) Determination of the diet of Octopus rubescens through examination of its beer bottle dens in Puget Sound. Malacologia 41:455–460

    Google Scholar 

  • Anderson RC, Wood JB, Mather JA (2008) Octopus vulgaris in the Caribbean is a specializing generalist. Mar Ecol Prog Ser 371:199–202. doi:10.3354/meps07674

    Article  Google Scholar 

  • Boucher-Rodoni R, Mangold K (1977) Experimental study of digestion in Octopus vulgaris. J Zool 183:505–515

    Article  Google Scholar 

  • Boucher-Rodoni R, Mangold K (1985) Ammonia excretion during feeding and starvation in Octopus vulgaris. Mar Biol 86:193–197

    Article  CAS  Google Scholar 

  • Boucher-Rodoni R, Mangold K (1988) Comparative aspects of ammonia excretion in cephalopods. Malacologia 29:145–151

    Google Scholar 

  • Curio E (1976) The ethology of predation. Springer-Verlag, New York

    Google Scholar 

  • Daly HI, Peck LS (2000) Energy balance and cold adaptation in the octopus Pareledone charcoti. J Exp Mar Biol Ecol 245:197–214

    Article  Google Scholar 

  • Dodge R, Scheel D (1999) Remains of the prey—Recognizing the midden piles of Octopus dofleini (Wulker). Veliger 42:260–266

    Google Scholar 

  • Farías A, Uriarte I, Hernández J, Pino S, Pascual C, Caamal C, Domíngues P, Rosas C (2009) How size related to oxygen consumption, ammonia excretion, and ingestion rates in cold (Enteroctopus megalocyathus) and tropical (Octopus maya) octopus species. Mar Biol 156:1547–1557. doi:10.1007/s00227-009-1191-4

    Article  Google Scholar 

  • Garcia Garcia B, Cerezo Valverde J (2006) Optimal proportions of crabs and fish in diet for common octopus (Octopus vulgaris) ongrowing. Aquaculture 253:502–511. doi:10.1016/j.aquaculture.2005.04.055

    Article  Google Scholar 

  • Grasshoff K, Kremling K (1999) Methods of seawater analysis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Hanlon RT, Messenger JB (1996) Cephalopod behavior. Cambridge University Press, Cambridge

    Google Scholar 

  • Hochberg FG (1998) Octopus rubescens. In: Scott PV, Blake JA (eds) Taxonomic atlas of the benthic fauna of the Santa Maria Basin and the western Santa Barbara Channel. Santa Barbara Museum of Natural History, Santa Barbara, pp 213–218

    Google Scholar 

  • Hunt SL, Mulligan TJ, Komori K (1999) Oceanic feeding habits of Chinook salmon, Oncorhynchus tshawytscha, off northern California. Fish Bull 97:717–721

    Google Scholar 

  • Katsanevakis S, Stephanopaulou S, Miliou H, Moraitou-Apolstolopoulou M, Verriopoulos G (2005) Oxygen consumption and ammonia excretion of Octopus vulgaris (Cephalopoda) in relation to body mass and temperature. Mar Biol 146:725–732. doi:10.1007/s00227-004-1473-9

    Google Scholar 

  • Lee PG (1994) Nutrition of cephalopods: fueling the system. In: Pörtner HO, O’Dor RK, Macmillan DL (eds) Physiology of cephalopod molluscs. Gordon and Breach Publishers, Basel, pp 35–51

    Google Scholar 

  • Lucas A (1996) Bioenergetics of aquatic animals. Taylor and Francis Inc., London

    Google Scholar 

  • Mather JA, O’Dor RK (1991) Foraging strategies and predation risk shape the natural history of juvenile Octopus vulgaris. Bull Mar Sci 49:256–269

    Google Scholar 

  • Mayntz D, Raubenheimer D, Salomon M, Toft S, Simpson SJ (2005) Nutrient-specific foraging in invertebrate predators. Science 307:111–113. doi:10.1126/science.1105493

    Article  CAS  Google Scholar 

  • Mayzaud P, Conover RJ (1988) O:N atomic ratio as a tool to describe zooplankton metabolism. Mar Ecol Prog Ser 45:289–302

    Article  CAS  Google Scholar 

  • McCullouch BD (2004) Fixing statistical errors in spreadsheet software: the cases of Gnumeric and Excel. In: Computational statistics and data analysis statistical software newsletter. http://www.csdassn.org/software_reports/gnumeric.pdf. Accessed 2 Jan 2009

  • Murdoch WW (1969) Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol Monogr 39:335–354

    Article  Google Scholar 

  • Navarro JC, Villanueva R (2003) The fatty acid composition of Octopus vulgaris paralarvae reared with live and inert food: deviation from their natural fatty acid profile. Aquaculture 219:613–631. doi:10.1016/S0044-8486(02)00311-3

    Article  CAS  Google Scholar 

  • O’Dor RK, Wells MJ (1987) Energy and nutrient flow. In: Boyle PR (ed) Cephalopod life cycles. Academic Press, New York, pp 109–134

    Google Scholar 

  • O’Dor RK, Mangold K, Boucher-Rodoni R, Wells MJ, Wells J (1984) Nutrient absorption, storage and remobilization in Octopus vulgaris. Mar Behav Physiol 11:239–258

    Article  Google Scholar 

  • Oxman DS (1995) Seasonal abundance, movements, and food habits of harbor seals (Phoca vitulina richardsi) in Elkhorn Slough, California. Master thesis, California State University, Stanislaus

  • Perez MC, Lopez DA, Aguila K, Gonzalez ML (2006) Feeding and growth in captivity of the octopus Enteroctopus megalocyathus Gould, 1852. Aquacult Res 37:550–555. doi:10.1111/j.1365-2109.2006.01454.x

    Article  Google Scholar 

  • Petza D, Katsanevakis S, Verriopoulos G (2006) Experimental evaluation of the energy balance in Octopus vulgaris, fed ad libitum on a high-lipid diet. Mar Biol 148:827–832. doi:10.1007/s00227-005-0129-8

    Article  CAS  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R foundation for statistical computing. http://cran.r-project.org/doc/manuals/fullrefman.pdf. Accessed 15 July 2009

  • Rigby P, Sakurai Y (2004) Temperature and feeding related growth efficiency of immature octopuses Enteroctopus dofleini. Suisan Zoshoku 52:29–36

    Google Scholar 

  • Roa R (1992) Design and analysis of multiple-choice feeding-preference experiments. Oecologia 89:509–515

    Google Scholar 

  • Rosas C, Cuzon G, Pascual C, Gaxiola G, Chay D, López N, Maldonado T, Domingues PM (2007) Energy balance of Octopus maya fed crab or an artificial diet. Mar Biol 152:371–381. doi:10.1007/s00227-007-0692-2

    Article  CAS  Google Scholar 

  • Scheel D, Lauster A, Vincent TLS (2007) Habitat ecology of Enteroctopus dolfleini from middens and live prey surveys in Prince William Sound, Alaska. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods past and present: new insights and fresh perspectives. Springer, Dordrech, pp 434–458

    Chapter  Google Scholar 

  • Seibel BA, Drazen JC (2007) The rates of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philos Trans R Soc London Ser B 362:2061–2078. doi:10.1098/rstb.2007.2101

    Article  CAS  Google Scholar 

  • Semmens JM, Pecl G, Villanueva R, Jouffre D, Sobrino I, Wood JB, Rigby P (2004) Understanding octopus growth: patterns, variability and physiology. Mar Freshw Res 55:367–377. doi:10.1071/MF03155

    Article  Google Scholar 

  • Shipley LA, Forbey JS, Moore BD (2009) Revisiting the dietary niche: when is a mammalian herbivore a specialist? Integr Comp Biol 49:274–290. doi:10.1093/icb/icp051

    Article  Google Scholar 

  • Simpson SJ, Sibly RM, Lee KP, Behmer ST, Raubenheimer D (2004) Optimal foraging when regulating intake of multiple nutrients. Anim Behav 68:1299–1311. doi:10.1016/j.anbehav.2004.03.003

    Article  Google Scholar 

  • USDA (2008) USDA National Nutrient Database for Standard Reference. http://www.nal.usda.gov/fnic/foodcomp/search/. Accessed 2 Jan 2009

  • van Baalen M, Krivan V, van Rijn PCJ, Sabelis MW (2001) Alternative food, switching predators, and the persistence of predator-prey systems. Am Nat 157:512–524. doi:10.1086/319933

    Article  Google Scholar 

  • Van Heukelem WF (1976) Growth, bioenergetics and life-span of Octopus cyanea and Octopus maya. Dissertation, University of Hawaii

  • Vincent TLS, Scheel D, Hough KR (1998) Some aspects of diet and foraging behavior of Octopus dofleini (Wulker, 1910) in its northernmost range. Mar Ecol 19:13–29

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Joe Galusha and Dr. Jim Nestler of the Department of Biological Sciences at Walla Walla University and Roland Anderson of the Seattle Aquarium for their contributions and input to this research. We would also like to thank the anonymous reviewers and Dr. Myron Peck of Universität Hamburg for their insightful and helpful comments on this manuscript. The Walla Walla University Department of Biological Sciences provided funding for this work. All experiments reported here complied with current laws of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirt L. Onthank.

Additional information

Communicated by M. A. Peck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onthank, K.L., Cowles, D.L. Prey selection in Octopus rubescens: possible roles of energy budgeting and prey nutritional composition. Mar Biol 158, 2795–2804 (2011). https://doi.org/10.1007/s00227-011-1778-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1778-4

Keywords

Navigation