Skip to main content
Log in

Factors determining the hatching success of Antarctic krill Euphausia superba embryo: lipid and fatty acid composition

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The present study addresses the effect of maternal diet on hatching success and condition of embryos and larvae of Antarctic krill Euphausia superba. Lipid and fatty acid content and composition were determined in field and laboratory samples. Developmental stages analyzed in embryos included: multiple-cell, gastrula, and limb-bud stages. Larval stages analyzed included: nauplius I, nauplius II, and metanauplius. Laboratory-reared embryos were spawned by gravid females incubated under three feeding groups: (1) phytoplankton mixture, (2) phytoplankton mixture and minced clam, and (3) phytoplankton mixture, minced clam, and commercial larval food. Hatching success was highest in group 3 (100%), lowest in group 1 (0%), and highly variable in field samples (0–48%). Lipid decreased slightly in embryos during embryonic development, while large decreases in lipid were found during nauplius development. High levels of 18:2(n-6), 20:4(n-6), and 22:6(n-3) observed with group 3 samples coincided with high hatching success in krill embryos. The ratio of 22:6(n-3)/20:5(n-3) also correlated to hatching success of embryos. The fatty acid profile of embryos in group 3 was similar to that of the field-collected embryos, reflecting the contribution of the commercial larval food in the maternal diet. In our study, the maternal diet was found to influence the fatty acid composition of embryos and in turn affects the hatching success of krill. Specific polyunsaturated fatty acids appeared to play important roles in embryogenesis in krill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackman RG (1981) Flame ionization detection applied to thin-layer chromatography on coated quartz rods. Methods Enzymol 72:205–252

    Article  CAS  Google Scholar 

  • Alonzo F, Virtue P, Nicol S, Nichols PD (2005) Lipids as trophic markers in Antarctic krill. II. Lipid composition of the body and digestive gland of Euphausia superba in controlled conditions. Mar Ecol Prog Ser 296:65–79

    Article  CAS  Google Scholar 

  • Amsler MO, George RY (1985) Changes in the biochemical composition of Euphausia superba Dana embryos during early development. Polar Biol 4:61–63

    Article  CAS  Google Scholar 

  • Arendt KE, Jónasdóttir SH, Hansen PJ, Gärtner S (2005) Effects of dietary fatty acid on the reproductive success of the calanoid copepod Temora longicornis. Mar Biol 146:513–530

    Article  CAS  Google Scholar 

  • Atkinson A, Meyer B, Stübing D, Hagen W, Schmidt K, Bathmann UV (2002) Feeding and Energy Budgets of Antarctic Krill Euphausia superba at the Onset of Winter-II. Juveniles and Adults. Limnol Oceanogr 47(4):953–966

    Article  Google Scholar 

  • Baker AdeC, Clark MR, Harris MJ (1973) The N.I.O combination net (RMT 1 + 8) and further development of Rectangular Midwater Trawls. J Mar Biol Ass UK 53:176–184

    Article  Google Scholar 

  • Ban S, Burns C, Castel J, Chaudron Y, Christou E, Escribano R, Umani SF, Gasparini S, Ruiz FG, Hoffmeyer M, Ianora A, Kang H-K, Laabir M, Lacoste A, Miralto A, Ning X, Poulet S, Rdriguiez V, Runge J, Shi J, Starr M, Uye S, Wang Y (1997) The paradox of diatom-copepod interactions. Mar Ecol Prog Ser 157:287–293

    Article  Google Scholar 

  • Bell MV, Henderson RJ, Sargent JR (1986) The role of polyunsaturated fatty acids in fish. Comp Biochem Physiol 83B:711–719

    CAS  Google Scholar 

  • Bligh EG, Dyer WM (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 35:911–917

    Article  Google Scholar 

  • Cahu CL, Cuzan G, Quazuguel P (1995) Effect of highly unsaturated fatty acids, alpha-tocopherol and ascorbic acid in broodstock diet on egg composition and development of Panaeus indicus. Comp Biochem Physiol 112(3–4):417–424

    Article  Google Scholar 

  • Cavalli RO, Lavens P, Sorgeloos P (1999) Performance of Macrobrachium rosenbergii broodstock fed diets with different fatty acid composition. Aquaculture 179:387–402

    Article  CAS  Google Scholar 

  • Christie WW (1982) Lipid analysis. Pergamon Press Inc., Tarrytown, NY

    Google Scholar 

  • Clarke A (1980) The biochemical composition of krill Euphausia superba Dana from South Georgia. J Exp Mar Biol Ecol 43:221–236

    Article  CAS  Google Scholar 

  • Cripps GC, Atkinson A (2000) Fatty acid composition as an indicator of carnivory in Antarctic krill, Euphausia superba. Can J Fish Aquat Sci 57(3):31–37

    Article  CAS  Google Scholar 

  • Cripps GC, Watkins JL, Hill HJ, Atkinson A (1999) Fatty acid content of Antarctic krill Euphausia superba at South Georgia related to regional populations and variations in diet. Mar Ecol Prog Ser 181:177–188

    Article  CAS  Google Scholar 

  • Davidson AT, Scott FJ, Nash VG, Wright SW, Raymond B (2010) Physical and biological control of protistan composition, distribution and abundance in the seasonal ice zone of the Southern Ocean between 30 and 80°E. Deep-Sea Res II 57(9–10):828–848

    Article  CAS  Google Scholar 

  • de la Mare WK (1994) Estimating krill recruitment and its variability. CCAMLR Sci 1:55–69

    Google Scholar 

  • Evans RP, Parrish CC, Brown JA, Davis PJ (1996) Biochemical composition of eggs from repeat and first-time spawning captive Atlantic halibut (Heppoglossus hippoglossus). Aquaculture 139(1–2):139–149

    Article  CAS  Google Scholar 

  • Frazer FC (1936) On the development and distribution of the young stages of krill (Euphausia superba). Discovery Rep 14:1–192

    Article  Google Scholar 

  • Hagen W, Van Vleet ES, Kattner G (1996) Seasonal lipid storage as overwintering strategy of Antarctic krill. Mar Ecol Prog Ser 134:85–89

    Article  CAS  Google Scholar 

  • Hagen W, Kattner G, Terbrüggen A, Van Vleet ES (2001) Lipid metabolism of the Antarctic krill Euphausia superba and its ecological implications. Mar Biol 139:95–104

    Article  CAS  Google Scholar 

  • Hagen W, Yoshida T, Virtue P, Kawaguchi S, Swadling K, Nicol S, Nichols P (2007) Effect of a carnivorous diet on the lipids, fatty acids and condition of Antarctic krill, Euphausia superba. Antarct Sci 19:183–188

    Article  Google Scholar 

  • Harrington SA, Ikeda T (1986) Laboratory observation of spawning, brood size and egg hatchability of the Antarctic krill Euphasusia superba from Prydz Bay, Antarctica. Mar Biol 92:231–235

    Article  Google Scholar 

  • Harrison KE (1990) The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans. J Shellfish Res 9:1–28

    Google Scholar 

  • Hirano Y, Matsuda T, Kawaguchi S (2003) Breeding Antarctic krill in captivity. Mar Freshw Behav Physiol 36(4):259–269

    Article  Google Scholar 

  • Ikeda T, Dixon P (1984) The influence of feeding on the metabolic activity of Antarctic krill (Euphausia superba Dana). Polar Biol 3:1–9

    Article  Google Scholar 

  • Irigoien X, Harris RP, Verheye HM, Joly P, Runge J, Starr M, Pond D, Campbell R, Shreeve R, Ward P, Smith AN, Dam HG, Peterson W, Tirelli V, Koski M, Smith T, Harbour D, Davidson R (2002) Copepod hatching success in marine ecosystems with high diatom concentrations. Nature 419:387–389

    Article  CAS  Google Scholar 

  • Jónasdóttir SH (1994) Effects of food quality on the reproductive success of Acartia tonsa and Acartia hudsonica: laboratory observations. Mar Biol 121:67–81

    Article  Google Scholar 

  • Jónasdóttir SH, Gudfinnsson H, Gislason A, Astthorsson O (2002) Diet composition and quality for Calanus finmarchicus egg production and hatching success off south-west Iceland. Mar Biol 140:1195–1206

    Article  Google Scholar 

  • Ju S-J, Harvey HR (2004) Lipid as markers of nutritional condition and diet in the Antarctic krill Euphausia superba and Euphausia crystallorophias during austral winter. Deep-Sea Res II 51:2199–2214

    Article  CAS  Google Scholar 

  • Ju S-J, Harvey HR, Gomez-Gutierrez J, Peterson WT (2006) The role of lipids during embryonic development of the euphausiids Euphausia pacifica and Thysanoessa spinifera. Limnol Oceanogr 51(5):2398–2408

    Article  CAS  Google Scholar 

  • Kawaguchi S, Satake M (1994) Relationship between recruitment of the Antarctic krill and the degree of ice cover near the South Shetland Islands. Fisheries Sci 60(1):123–124

    Article  Google Scholar 

  • Kawaguchi S, Yoshida T, Finley L, Cramp P, Nicol S (2007) The krill maturity cycle: a conceptual model of the seasonal cycle in Antarctic krill. Polar Biol 30:689–698

    Article  Google Scholar 

  • Kawaguchi S, King R, Meijers R, Osborn JE, Swadling KM, Ritz DA, Nicol S (2010) An experimental aquarium for observing the schooling behaviour of Antarctic krill (Euphausia superba). In: Kawaguchi S, Peterson WT (eds) Deep Sea Res II 57(7–8):683–692

  • Kikuno T (1981) Spawning behaviour and early development of the Antarctic krill, Euphausia superba Dana observed on board R. V. Kaiyo-Maru in 1979/80. Nankyoku Shiryo (Antarctic Rec) 73:97–102

    Google Scholar 

  • King R, Nicol S, Cramp P, Swadling KM (2003) Krill maintenance and experimentation at the Australian Antarctic Division. Mar Freshw Behav Physiol 36(4):271–283

    Article  Google Scholar 

  • Lacoste A, Poulet SA, Cueff A, Kattner G, Ianora A, Laabir M (2001) New evidence of the copepod maternal food effects on reproduction. J Exp Mar Biol Ecol 259:85–107

    Article  CAS  Google Scholar 

  • Lavens P, Sorgeloos P (1991) Variation in eggs and larval quality in various fish and crustacean species. In: Lavens P, Sorgeloos P, Jaspers E, Ollevier E (eds) Larvi’91–Fish & Crustacean Larviculture Symposium. Special publication No 15. European Aquaculture Society, Gent, Belgium, pp 221–222

    Google Scholar 

  • Loeb V, Siegel V, Holm-Hansen O, Hewitt R, Fraser W, Trivelpiece W, Trivelpiece S (1997) Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900

    Article  CAS  Google Scholar 

  • Marr JWS (1962) The natural history and geography of the Antarctic krill (Euphausia superba). Discover Rep 32:33–464

    Google Scholar 

  • Nicol S (2000) Understanding krill growth and aging: the contribution of experimental studies. Can. J Fish Aquat Sci 57(3):168–177

    Article  Google Scholar 

  • Nicol S, Meiners K (2010) BROKE-West, a large ecosystem survey of the South West Indian Ocean sector of the Southern Ocean, 30°E–80°E (CCAMLR Division 58.4.2). Deep-Sea Res II 57(9–10):693–991

    Article  CAS  Google Scholar 

  • Nicol S, Constable AJ, Pauley T (2000) Estimate of circumpolar abundance of Antarctic krill based on recent acoustic density measurements. CCAMLR Science 7:7–99

    Google Scholar 

  • Paffenhöfer G-A (2002) An assessment of the effects of diatoms on planktonic copepods. Mar Ecol Prog Ser 227:305–310

    Article  Google Scholar 

  • Palacios E, Ibarra AM, Ramirez JL, Portillo G, Racotta IS (1998) Biochemical composition of eggs and nauplii in White Pacific Shrimp, Panaeus vannamei (Boone), in relation to the physiological conditions of spawners in a commercial hatchery. Aquaculture Res 29:183–189

    Article  Google Scholar 

  • Palacios E, Racotta IS, Heras H, Marty Y, Moal J, Samain J-F (2001) Relation between lipid and fatty acid composition of eggs and larval survival in white pacific shrimp (Panaeus vannamei, Boone, 1931). Aquacult Int 9:531–543

    Article  CAS  Google Scholar 

  • Pickova J, Dutta PC, Larsson P-O, Kiessling A (1997) Early embryonic cleavage pattern, hatching success, and egg-lipid fatty acid composition: comparison between two cod (Gadus morhua) stocks. Can J Fish Aquat Sci 54:2410–2416

    CAS  Google Scholar 

  • Quetin LB, Ross RM (1984) Depth distribution of developing Euphausia superba embryos, predicted from sinking rates. Mar Biol 79:47–53

    Article  Google Scholar 

  • Quetin LB, Ross RM (1985) Feeding by Antarctic Krill, Euphausia superba : Does size matter? In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer-Verlag, Berlin, pp 372–377

    Chapter  Google Scholar 

  • Quetin LB, Ross RM (2001) Environmental variability and its impact on the reproductive cycle of Antarctic krill. Amer Zool 41:74–89

    Google Scholar 

  • Quetin LB, Ross RM (2003) Episodic recruitment in Antarctic krill Euphausia superba in the Palmer LTER study region. Mar Ecol Prog Ser 259:185–200

    Article  Google Scholar 

  • Quetin LB, Ross RM, Clarke A (1994) Krill energetics: seasonal and environmental aspects of the physiology of Euphausia superba. In: El-Sayed SZ (ed) Southern Ocean ecology: the BIOMASS perspective. pp, Cambridge University Press. Cambridge, pp 165–184

    Google Scholar 

  • Ross RM, Quetin LB (2000) Reproduction in Euphausiacea. In: Everson I (ed) Krill biology. Ecology and Fisheries. Blackwell Science, Cambridge, pp 150–181

    Chapter  Google Scholar 

  • Sargent JR (1995) Origins and functions of egg lipids: nutritional implications. In: Bromage NR, Roberts RJ (eds) Broodstock management and egg and larval quality. Blackwell Science, Cambridge, UK, pp 353–372

    Google Scholar 

  • Siegel V, Loeb V (1995) Recruitment of Antarctic krill (Euphausia superba) and possible causes for its variability. Mar Ecol Prog Ser 123:45–56

    Article  Google Scholar 

  • Siegel V, Ross RM, Quetin LB (2003) Krill (Euphausia superba) recruitment indices from the western Antarctic Peninsula: are they representative of larger regions? Polar Biol 26:672–679

    Article  Google Scholar 

  • Tocher DR, Mourente G, Sargent JR (1992) Metabolism of [1–14C] docosahexaenoate (22:6n–3), [1–14C] eicosapentaenoate (20:5n–3) and [1–14C] linolenate (18:3n–3) in brain cells from juvenile turbot Scophthalmus maximus. Lipids 27:494–499

    Article  CAS  Google Scholar 

  • Virtue P, Nichols PD, Nicol S, Hosie G (1996) Reproductive trade-off in male Antarctic krill. Euphausia superba. Mar Biol 126:521–527

    Article  CAS  Google Scholar 

  • Volkman JK, Nichols P (1991) Applications of thin layer chromatography-flame ionization detection to the analysis of lipids and pollutants in marine and environmental samples. J Planar Chromatogr 4:19–26

    CAS  Google Scholar 

  • Watkins JL (1999) A composite recruitment index to describe interannual changes in the population structure of Antarctic krill at South Georgia. CCAMLR Sci 6:71–84

    Google Scholar 

  • Wickins JF, Beard TW, Child AR (1995) Maximizing lobster, Homarus gammarus (L.), egg and larval viability. Aquaculture Res 26:379–392

    Article  Google Scholar 

  • Wouters R, Lavens P, Nieto J, Sorgeloos P (2001) Penaeid shrimp broodstock nutrition: an updated review on research and development. Aquaculture 202:1–21

    Article  Google Scholar 

  • Wright SW, Enden RL, Pearce I, Davidson T, Scott FJ (2010) Phytoplankton community structure and stocks in the Southern Ocean (30–80°E) determined by CHEMTAX analysis of HPLC pigment signatures. Deep-Sea Res II 57(9–10):758–778

    Article  CAS  Google Scholar 

  • Xu XL, Castell JD, O’Dor RK (1994) Influence of dietary lipid sources on fecundity, egg hatchability and fatty acid composition of Chinese prawn (Penaeus chinensis) broodstock. Aquaculture 119:359–370

    Article  CAS  Google Scholar 

  • Yoshida T, Toda T, Hirano Y, Matsuda T, Kawaguchi S (2004) Effect of the temperature on embryo development time and hatching success of the Antarctic krill Eupahusia superba Dana in the laboratory. Mar Fresh Behav Physiol 37(2):137–145

    Article  Google Scholar 

Download references

Acknowledgments

We thank the officers and crew of RV ‘Aurora Australis’ for their professional and friendly support during the marine research cruise BROKE-WEST and P. Cramp and R. King for assistance with krill incubation. We thank D. Holdsworth, M. Miller, and B. Mooney for technical support during running of the GC–MS and lipid and fatty acid analyses. We thank S. Nicol for his constructive comments on the manuscript together with three anonymous journal referees. This work is a contribution of the Antarctic Marine Ecosystems Program of the Antarctic Climate and Ecosystems, Co-operative Research Centre funded by the Australian Governments Co-operative Research Centres Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Yoshida.

Additional information

Communicated by S. A. Poulet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, T., Virtue, P., Kawaguchi, S. et al. Factors determining the hatching success of Antarctic krill Euphausia superba embryo: lipid and fatty acid composition. Mar Biol 158, 2313–2325 (2011). https://doi.org/10.1007/s00227-011-1735-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1735-2

Keywords

Navigation