Skip to main content
Log in

Allozyme heterozygosity and escape response performance of the scallops, Argopecten purpuratus and Placopecten magellanicus

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Multilocus allozyme heterozygosity (MLH) has been positively correlated with growth in some marine bivalves and was suggested to facilitate swimming activity in pectinids. Using two highly mobile scallops, Placopecten magellanicus and Argopecten purpuratus, we examined escape response performance and morphometric characteristics as a function of allelic variability at metabolic loci. Ten allozyme systems were used for A. purpuratus and 7 for P. magellanicus. In each species, the morphometric characteristics and escape response parameters were analyzed separately using principal components analysis (PCA) and the scores of the major principal components were related to allozyme heterozygosity. In both P. magellanicus and A. purpuratus, positive correlations were found between MLH and morphometric parameters, but escape response parameters were only positively linked to MLH in P. magellanicus, and then weakly. The hypothesis that MLH improves fitness of pectinids by increasing the capacity to escape predators is not supported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebersold P, Winans G, Teel D, Milner G, Utter F (1987) Manual for starch gel electrophoresis: a method for the detection of genetic variation. US Dep Commerce, NOAA Tech Rep NMFS 61

  • Alfonsi CY, Nusetti O, Pérez JE (1995) Heterozygosity and metabolic efficiency in the scallop, Euvola ziczac (Linneaus, 1758). J Shellfish Res 14:389–393

    Google Scholar 

  • Bailey DM, Peck LS, Bock C, Pörtner HO (2003) High-energy phosphate metabolism during exercise and recovery in temperate and Antarctic scallops–an in vivo 31P-NMR study. Physiol Biochem Zool 76:622–633

    Article  CAS  Google Scholar 

  • Barbeau MA, Scheibling RE (1994) Behavioral mechanisms of prey size selection by sea stars (Asterias vulgaris Verrill) and Crabs (Cancer irroratus Say) preying on juvenile sea scallops (Placopecten magellanicus (Gmelin)). J Exp Mar Biol Ecol 180:103–136

    Article  Google Scholar 

  • Bayne BL, Hawkins AJS (1997) Protein metabolism, the cost of growth and genomic heterozygosity: experiments with the mussel Mytilus galloprovincialis Lmk. Physiol Zool 70:391–402

    Google Scholar 

  • Belkhir K, Borsa P, Goudet J, Chikhi L, Bonhomme F (1998) Genetix, logiciel sous WindowsNT pour la génétique des populations. Laboratoire génome et populations, CNRS UPR 9060, Université de Montpellier II, Montpellier, France

  • Bricelj VM, Krause MK (1992) Resource allocation and population genetics of the bay scallop, Argopecten irradians irradians: effects of age and allozyme heterozygosity on reproductive output. Mar Biol 113:253–261

    CAS  Google Scholar 

  • Britten HB (1996) Meta-analyses of the association between multilocus heterozygosity and fitness. Evolution 50:2158–2164

    Article  Google Scholar 

  • Brokordt KB, Guderley H (2004a) Energetic requirements during gonad maturation and spawning in scallops: sex differences in Chlamys islandica. J Shell Res 23:25–32

    Google Scholar 

  • Brokordt KB, Guderley H (2004b) Binding of glycolytic enzymes in scallop adductor muscle is altered by reproductive status. Mar Ecol Prog Ser 268:141–149

    Article  CAS  Google Scholar 

  • Brokordt KB, Himmelman JH, Guderley H (2000a) Effect of reproduction on escape responses and muscle metabolic capacities in the scallop Chlamys islandica Müller 1776. J Exp Mar Biol Ecol 251:205–225

    Article  Google Scholar 

  • Brokordt KB, Himmelman JH, Nusetti O, Guderley H (2000b) Reproductive investment reduces recuperation from escape responses in the tropical scallop Euvola ziczac. Mar Biol 137:857–865

    Article  CAS  Google Scholar 

  • Brokordt KB, Fernández M, Gaymer C (2006) Domestication reduces the capacity to escape from predators. J Exp Mar Biol Ecol 329:11–19

    Article  Google Scholar 

  • Chapman JR, Nakagawa S, Coltman DW, Slate J, Sheldon BC (2009) A quantitative review of heterozygosity-fitness correlations in animal populations. Mol Ecol 18(13):2746–2765

    Article  CAS  Google Scholar 

  • Chih PC, Ellington WS (1983) Energy metabolism during contractile activity and environmental hypoxia in the phasic adductor muscle of the bay scallop Argopecten irradians concentricus. Physiol Zool 56:623–631

    CAS  Google Scholar 

  • Chih PC, Ellington WS (1986) Control of glycolysis during contractile activity in the phasic muscle of the bay scallop, Argopecten irradians concentricus: identification of potential sites of regulation and a consideration of the control of octopine dehydrogenase activity. Physiol Zool 59:563–573

    CAS  Google Scholar 

  • Coltman DW, Slate J (2003) Microsatellite measures of inbreeding: a meta-analysis. Evolution 57(5):971–983

    CAS  Google Scholar 

  • David P (1998) Heterozygosity–fitness correlations: new perspectives on old problems. Heredity 80:531–537

    Article  Google Scholar 

  • de Zwaan A, Thompson RJ, Livingstone DR (1980) Physiological and biochemical aspects of the valve snap and valve closure responses in the giant scallop Placopecten magellanicus. II. Biochemistry. J Comp Physiol 137:105–114

    Google Scholar 

  • Deng HW, Fu YX (1998) Conditions for positive and negative correlations between fitness and heterozygosity in equilibrium populations. Genetics 148:1333–1340

    CAS  Google Scholar 

  • Diehl WJ, Koehn RK (1985) Multiple-locus heterozygosity, mortality, and growth in a cohort of Mytilus edulis. Mar Biol 88:265–271

    Article  Google Scholar 

  • Fleury PG, Janssoone X, Nadeau M, Guderley H (2005) Force production during escape: sequential recruitment of the phasic and tonic portions of the adductor muscle in juvenile Placopecten magellanicus (Gmelin). J Shellfish Res 4:905–911

    Google Scholar 

  • Gaines MS, McClennaghan LR Jr, Rose RK (1978) Temporal patterns of allozymic variation in fluctuating populations of Microtus ochrogaster. Evolution 32:723–739

    Article  CAS  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html

  • Guderley H, Janssoone X, Nadeau M, Bourgeois M, Pérez HM (2008) Force recordings during escape responses by Placopecten magellanicus (Gmelin): seasonal changes in the impact of handling stress. J Exp Mar Biol Ecol 355:85–94

    Article  Google Scholar 

  • Hanson B, Westerberg L (2002) On the correlation between heterozygosity and fitness in natural populations. Mol Ecol 11:2467–2474

    Article  Google Scholar 

  • Harris H, Hopkinson DA (1976) Handbook of enzyme electrophoresis in human genetics. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Hebert DPN, Beaton MJ (1989) Methodologies for allozyme analysis cellulose acetate electrophoresis. Helena Laboratories, Texas

    Google Scholar 

  • Hedgecock D, McGoldrick DJ, Manahan DT, Vavra J, Appelmans N, Bayne BL (1996) Quantitative and molecular genetic analysis of heterosis in bivalve molluscs. Exp Mar Biol Ecol 203:49–59

    Article  CAS  Google Scholar 

  • Hillis DM, Moritz C (1990) An overview of applications of molecular systematics. In: Hillis DM, Moritz C (eds) Molecular systematics. Sinauer Associates Inc, Sunderland, pp 502–515

    Google Scholar 

  • Hoare K, Beaumont A (1995) Effect of an Odh null allele and GPI low-activity allozyme on shell length in laboratory-reared. Mytilus edulis. Mar Biol 123:775–780

    Article  CAS  Google Scholar 

  • Kashi Y, Soler M (1999) Functional roles of microsatellites and minisatellites. In: Goldstein DB, Schlőtterer C (eds) Microsatellites. Evolution, application. Oxford University Press, New York, pp 10–23

    Google Scholar 

  • Kleinman S, Hatcher BG, Scheibling RE (1996) Growth and content of energy reserves in juvenile sea scallops, Placopecten magellanicus, as a function of swimming frequency and water temperature in the laboratory. Mar Biol 124:629–635

    Article  Google Scholar 

  • Koehn RK, Gaffney PM (1984) Genetic heterozygosity and growth rate in Mytilus edulis. Mar Biol 82:1–7

    Article  Google Scholar 

  • Koehn RK, Shumway SE (1982) A genetic/physiological explanation for differential growth rate among individuals of the American oyster, Crassostrea virginica (Gmelin). Mar Biol Lett 3:35–42

    Google Scholar 

  • Kraffe E, Tremblay R, Belvin S, Le Coz JR, Marty Y, Guderley H (2008) Effect of reproduction on escape responses, metabolic rates and muscle mitochondrial properties in the scallop Placopecten magellanicus. Mar Biol 156:25–38

    Article  CAS  Google Scholar 

  • Leblanc N, Landry T, Stryhn H, Tremblay R, McNiven M, Davidson J (2005) The effect of high air and water temperature on juvenile Mytilus edulis in Prince Edward Island, Canada. Aquaculture 243:185–194

    Article  Google Scholar 

  • Leblanc N, Tremblay R, Davidson J, Landry T, McNiven M (2008) The effect of selection treatments on Mytilus edulis, modifications of genetic and physiological characteristics. Mar Biol 153:1142–1152

    Article  Google Scholar 

  • Lesbarreres D, Primmer C, Laurila A, Juha M (2005) Environmental and population dependency of genetic variability-fitness correlations in Rana temporaria. Mol Ecol 14:311–323

    Article  Google Scholar 

  • Livingstone DR, de Zwaan A, Thompson RJ (1981) Aerobic metabolism, octopine production and phosphoargenine as sources of energy in the phasic and catch adductor muscles of the giant scallop Placopecten magellanicus during swimming and the subsequent recovery period. Comp Biochem Physiol 70B:35–44

    CAS  Google Scholar 

  • Mitton JB (1993) Enzyme heterozygosity, metabolism, and developmental stability. Genetica 89:47–65

    Article  CAS  Google Scholar 

  • Mitton JB (1997) Selection in natural populations. Oxford University Press, Oxford

    Google Scholar 

  • Myrand B, Tremblay R, Sevigny JM (2002) Selection against blue mussels (Mytilus edulis L) homozygotes under various stressful conditions. Am Genet Assoc 93:238–248

    CAS  Google Scholar 

  • Ortiz M, Jesse S, Stotz W, Wolff M (2003) Feeding behaviour of the asteroid Meyenaster gelatinosus in responses to changes in abundance of the scallop Argopecten purpuratus in northern Chile. Archiv für Hydrobiologie 157:213–225

    Article  Google Scholar 

  • Pérez HM, Janssoone X, Guderley H (2008a) Tonic contractions allow metabolic recuperation of the adductor muscle during escape responses of giant scallop Placopecten magellanicus. J Exp Mar Biol Ecol 360:78–84

    Article  Google Scholar 

  • Pérez HM, Janssoone X, Nadeau M, Guderley H (2008b) Force production during escape responses by Placopecten magellanicus is a sensitive indicator of handling stress: Comparison with adductor muscle adenylate energy charge and phosphoarginine levels. Aquaculture 282:142–146

    Article  Google Scholar 

  • Pierce BA, Mitton JB (1982) Allozyme heterozygosity and growth in the tiger salamander, Ambystoma tigrinum. J Hered 73:250–253

    CAS  Google Scholar 

  • Pogson HG, Zouros E (1994) Allozyme and RFLP heterozygotes as correlates of growth rate in the scallop Placopecten magellanicus: a test of the associate overdominance hypothesis. Genetics 137:221–231

    CAS  Google Scholar 

  • Pujolar JM, Maes GE, Vancoillie C, Volckaert FAM (2005) Growth rate correlates to individual heterozygosity in the European eel, Anguilla anguilla L. Evolution 59:189–199

    CAS  Google Scholar 

  • Queller DC, Strassmann JE, Hughes CR (1993) Microsatellites and kinship. Trends Ecol Evol 8:285–288

    Article  CAS  Google Scholar 

  • Rice W (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rodhouse PG, McDonald JH, Newell RIE, Koehn RK (1986) Gamete production, somatic growth and multiple-locus enzyme heterozygosity in Mytilus edulis. Mar Biol 90:209–214

    Article  Google Scholar 

  • Thompson RJ, Livingstone DR, de Zwaan A (1980) Physiological and biochemical aspects of valve snap and valve closure responses in the giant scallop Placopecten magellanicus. I. Physiology. J Comp Physiol 137:97–104

    CAS  Google Scholar 

  • Tremblay RB, Myrand B, Sevigny JM (1998) Genetic characterization of wild and suspension-cultured blue mussels (Mytilus edulis Linneaus, 1758) in the Magdalen Islands (Southern Gulf of St. Lawrence, Canada) J Shellfish Res 17:1191–1202

    Google Scholar 

  • Volckaert F, Zouros E (1989) Allozyme and physiological variation in the scallop Placopecten magellanicus and a general model for the effects of heterozygosity on fitness in marine molluscs. Mar Biol 103:51–61

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilkens LA (1991) Neurobiology and behavior of a scallop. In: Shumway SE (ed) Development in aquaculture and fisheries science. Scallops: biology, ecology, and aquaculture, vol 21. Elsevier, New York, pp 429–470

  • Winkler FM (2000) Estimación de la variabilidad genética. In: Bustos ER (ed) Programa de selección para el mejoramiento genético del ostión del norte (Argopecten purpuratus). Segundo Informe de Avance, FDI, Chile

    Google Scholar 

  • Zouros E, Foltz DW (1987) The use of allelic isozyme variation for the study of heterosis. Isozymes 13:1–59

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by funds from the RAQ and NSERC to HG and from FONDECYT 3020034 to KB. HPC was a recipient of a scholarship from the Organization of American States. The authors are extremely grateful to the staff of the “Laboratorio central de cultivos marinos” from Universidad Católica del Norte, Chile and the staff of the MAPAQ, Îles de la Madelaine, Canada, in particular to Carlos Solar, Madelaine Nadau and Bruno Myrand for facilitating our work. The technical assistance of Raul Vera, Xavier Janssoone, Andrée-Anne Labrecque, Stéphanie Labbé-Giguère, Kathy Jeno, Nicolas Leiva, Miguel Rivera and Javier Rojas was highly appreciated. The experiments comply with the current laws of the countries in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán M. Pérez.

Additional information

Communicated by S. Uthicke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, H.M., Brokordt, K.B., Tremblay, R. et al. Allozyme heterozygosity and escape response performance of the scallops, Argopecten purpuratus and Placopecten magellanicus . Mar Biol 158, 1903–1913 (2011). https://doi.org/10.1007/s00227-011-1702-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1702-y

Keywords

Navigation