Skip to main content

Advertisement

Log in

The role of intraguild predation in the population dynamics of small pelagic fish

  • Review, Concept, and Synthesis
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In this paper, we argue that understanding marine ecosystem functioning requires a thorough appreciation of the role of intraguild predation to system dynamics. The theoretical predictions of intraguild predation models might explain some of the community features observed in marine ecosystems such as low diversity in upwelling and productive systems and species alternation in response to moderate external forcing. Finally, we argue that an ecosystem approach to fisheries requires that the size–structure of fish populations should be taken into account and that it is extremely important to account for the predators of early stages (eggs and larvae) to gain a thorough understanding of the key interactions between species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alheit J (1987) Egg cannibalism versus egg predation: their significance in anchovies. S Afr J Mar Sci 5:467–470

    Article  Google Scholar 

  • Alheit J, Bakun A (2010) Population synchronies within and between ocean basins: apparent teleconnections and implications as to physical-biological linkage mechanisms. J Mar Syst 79:267–285

    Article  Google Scholar 

  • Andersen K, Beyer J (2006) Asymptotic size determines species abundance in the marine size spectrum. Am Nat 168:54–61

    Article  Google Scholar 

  • Arim M, Marquet PA (2004) Intraguild predation: a widespread interaction related to species biology. Ecol Let 7:557–564

    Article  Google Scholar 

  • Bailey KM, Houde ED (1989) Predation on eggs and larvae of marine fishes and the recruitment problem. In: Blaxter JHS, Southward AJ (eds) Advances in marine biology, vol 25. Academic press, London

    Google Scholar 

  • Bainbridge R (1958) The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat. J Exp Biol 35:109–133

    Google Scholar 

  • Bakun A (1996) Patterns in the ocean: ocean processes and marine population dynamics. University of California Sea Grant, San Diego, California, USA, in cooperation with Centro de Investigaciones Biológicas de Noroeste, La Paz, Baja California Sur, Mexico. p 323

  • Bakun A (2006) Wasp-waist populations and marine ecosystem dynamics: navigating the “predator pit” topographies. Prog Ocean 68:271–288

    Article  Google Scholar 

  • Bakun A, Broad K (2003) Environmental ‘loopholes’ and fish population dynamics: comparative pattern recognition with focus on El Niño effects in the Pacific. Fish Oceanogr 12:458–473

    Article  Google Scholar 

  • Barange M, Coetzee J, Takasuka A, Hill K, Gutierrez M, Oozeki Y, van der Lingen C, Agostini V (2009) Habitat expansion and contraction in anchovy and sardine populations. Prog Ocean 83:251–260

    Article  Google Scholar 

  • Barbieri MA, Cordova J, Gerlotto F, Espejo M (2005) Spatial spawning strategy of Jack Mackerel (Trachurus symmetricus Murphyi) on the central-south region of Chile. In: Castro LR, Freon P, van der Lingen C, Uriarte A (eds) Report of the SPACC meeting on small pelagic fish spawning habitat dynamics and the daily egg production method (DEPM), globec report 22, vol xiv. pp 73–74

  • Blankenship LE, Yayanos AA (2005) Universal primers and PCR of gut contents to study marine invertebrate diets. Mol Ecol 14:891–899

    Article  CAS  Google Scholar 

  • Bonnet D, Titelman J, Harris RP (2004) Calanus the cannibal. J Plankton Res 26:937–948

    Article  Google Scholar 

  • Borer ET, Briggs CJ, Murdoch WW, Swarbrick SL (2003) Testing intraguild predation theory in a field system: does numerical dominance shift along a gradient of productivity? Ecol Let 6:929–935

    Article  Google Scholar 

  • Borer ET, Briggs CJ, Holt RD (2007) Predators, parasitoids, and pathogens: a cross-cutting examination of intraguild predation theory. Ecology 88:2681–2688

    Article  Google Scholar 

  • Bundy A, Fanning LP (2005) Can Atlantic cod (Gadus morhua) recover? Exploring trophic explanations for the non-recovery of the cod stock on the eastern Scotian shelf, Canada. Can J Fish Aquat Sci 62:1474–1489

    Article  Google Scholar 

  • Butler JL (1991) Mortality and recruitment of pacific sardine, Sardinops sagax caerulea, larvae in the California current. Can J Fish Aquat Sci 48:1713–1723

    Article  Google Scholar 

  • Chavez JP, Ryan SE, Lluch-Cota S, Ñiquen CM (2003) From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299:217–221

    Article  CAS  Google Scholar 

  • Cury P, Bakun A, Crawford RJM, Jarre-Teichmann A, Quiñones RA, Shannon LJ, Verheye HM (2000) Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J Mar Sci 210:603–618

    Article  Google Scholar 

  • Deagle B, Kirkwood R, Jarman SN (2009) Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol Ecol 18:2022–2038

    Article  CAS  Google Scholar 

  • Diehl S, Feissel M (2001) Intraguild prey suffer from enrichment of their resources: a microcosm experiment with ciliates. Ecology 82:2977–2983

    Article  Google Scholar 

  • Durbin E, Casas M, Rynearson TA, Smith DC (2008) Measurement of copepod predation on nauplii using qPCR of the cytochrome oxidase I gene. Mar Biol 153:699–707

    Article  CAS  Google Scholar 

  • Eklov P, Persson L (1995) Species-specific antipredator capacities and prey refuges–interactions between piscivorous perch (Perca fluviatilis) and juvenile perch and roach (Rutilus rutilus). Behav Ecol Sociobiol 37:169–178

    Article  Google Scholar 

  • Finke DL, Denno RF (2002) Intraguild predations diminished in complex-structured vegetation: implications for prey suppression. Ecology 83:643–652

    Article  Google Scholar 

  • Finke DL, Denno RF (2004) Predator diversity dampens trophic cascades. Nature 429:407–410

    Article  CAS  Google Scholar 

  • Finke DL, Denno RF (2006) Spatial refuge from intraguild predation: implications for prey suppression and trophic cascades. Oecologia 149:265–275

    Article  Google Scholar 

  • Freon P, Mullon C, Voisin B (2003) Investigating remote synchronous patterns in fisheries. Fish Oceanogr 12:443–457

    Article  Google Scholar 

  • Garrido S, Ben-Hamadou R, Oliveira PB, Cunha ME, Chícharo MA, van der Lingen CD (2008) Diet and feeding intensity of sardine Sardina pilchardus: correlation with satellite-derived chlorophyll data. Mar Ecol Prog Ser 354:245–256

    Article  Google Scholar 

  • Gismervik I, Andersen T (1997) Prey switching by Acartia clausi: experimental evidence and implications of intraguild predation assessed by a model. Mar Ecol Prog Ser 157:247–259

    Article  Google Scholar 

  • Gutiérrez D, Sifeddine A, Field DB, Ortlieb L, Vargas G, Chávez F, Velazco F, Ferreira V, Tapia P, Salvatteci R, Boucher H, Morales MC, Valdés J, Reyss J-L, Campusano A, Boussafir M, Mandeng-Yogo M, García M, Baumgartner T (2009) Rapid reorganization in ocean biogeochemistry off Peru towards the end of the little ice age. Biogeosciences 6:835–848

    Article  Google Scholar 

  • Hart DR (2002) Intraguild predation, invertebrate predators, and trophic cascades in lake food webs. J Theor Biol 218:111–128

    Article  Google Scholar 

  • HilleRisLambers R, Dieckmann U (2003) Competition and predation in simple food webs: intermediately strong trade-offs maximize coexistence. Proc Roy Soc Lond B 270:2591–2598

    Article  Google Scholar 

  • Holt RD, Polis GA (1997) A theoretical framework for intraguild predation. Am Nat 149:745–764

    Article  Google Scholar 

  • Hosia A, Titelman J (2011) Intraguild predation between the native North Sea jellyfish Cyanea capillata and the invasive ctenophore Mnemiopsys leidy. J Plankton Res 33:535–540

    Article  Google Scholar 

  • Hsieh C, Glaser S, Lucas AJ, Sugihara G (2005) Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature 435:336–340

    Article  CAS  Google Scholar 

  • Irigoien X, Harris RP (2006) Comparative population structure, abundance and vertical distribution of six copepod species in the North Atlantic: evidence for intraguild predation? Mar Biol Res 2:276–290

    Article  Google Scholar 

  • Irigoien X, Head R, Klenke U, Meyer-Harms B, Harbour D, Niehoff B, Hirche HJ, Harris R (1998) A high frequency time series at weathership M, Norwegian Sea, during the 1997 spring bloom: feeding of adult female Calanus finmarchicus. Mar Ecol Prog Ser 172:127–137

    Article  Google Scholar 

  • Irigoien X, Fiksen Ø, Cotano U, Uriarte A, Alvarez P, Arrizabalaga H, Boyra G, Santos M, Sagarminaga Y, Otheguy P, Etxebeste E, Zarauz L, Artetxe I, Motos L (2007) Could Biscay Bay Anchovy recruit through a spatial loophole? Prog Oceanogr 74:132–148

    Article  Google Scholar 

  • Jarman SN, Gales NJ, Tierney M, Gill PC, Elliott NG (2002) A DNA based method for identic Wcation of krill species and its application to analysing the diet of marine vertebrate predators. Mol Ecol 11:2679–2690

    Article  CAS  Google Scholar 

  • Jarman SN, Redd KS, Gales NJ (2006) Group-specific primers for amplifying DNA sequences that identify Amphipoda, Cephalopoda, Echinodermata, Gastropoda, Isopoda, Ostracoda and Thoracica. Mol Ecol Notes 6:268–271

    Article  CAS  Google Scholar 

  • Kang HK, Poulet S, Lacoste A, Kang YJ (2000) A laboratory study of the effect of non-phytoplankton diets on the reproduction of Calanus helgolandicus. J. Plank. Res. 22:2171–2179

    Article  Google Scholar 

  • Klyashtorin LB (1998) Long-term climate change and main commercial fish production in the Atlantic and Pacific. Fish Res 37:115–125

    Article  Google Scholar 

  • Köster FW, Möllmann C (2000) Trophodynamic control by clupeid predators on recruitment success in Baltic cod? ICES J Mar Sci 57:310–323

    Article  Google Scholar 

  • Lluch-Belda D, Lluch-Cota DB, Hernandez-Vazquez S, Salinas-Zavala C, Schwartzlose RA (1991) Sardine and anchovy spawning as related to temperature and upwelling. CalCOFI Rep 32:105–111

    Google Scholar 

  • Lopez-Urrutia A, Harris RP, Smith T (2004) Predation by calanoid copepods on the appendicularian Oikopleura dioica. Limn Oceanogr 49:303–307

    Article  Google Scholar 

  • Magalhaes S, Tudorache C, Montserrat M, van Maanen R, Sabel-is MW, Janssen A (2005) Diet of intraguild predators aVects antipredator behavior in intraguild prey. Behav Ecol 16:364–370

    Article  Google Scholar 

  • Maury O, Faugeras B, Shin YJ, Poggiale JC, Ari TB, Marsac F (2007) Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 1: the model. Prog Oceanogr 74:479–499

    Article  Google Scholar 

  • Montserrat M, Bas C, Magalhaes S, Sabelis MW, de Roos AM, Janssen A (2007) Predators induce egg retention in prey. Oecologia 150:699–705

    Article  Google Scholar 

  • Montserrat M, Magalhaes S, Sabelis MW, de Roos AM, Janssen A (2008) Patterns of exclusion in an intraguild predator–prey system depend on initial conditions. J Anim Ecol 77:624–630

    Article  Google Scholar 

  • Mylius SD, Klumpers K, de Roos AM, Persson L (2001) Impact of intraguild predation and stage structure on simple communities along a productivity gradient. Am Nat 158:259–276

    Article  CAS  Google Scholar 

  • Nejstgaard J, Frischer M, Simonelli P, Troedsson C, Brakel M, Adiyaman F, Sazhin A, Artigas L (2008) Quantitative PCR to estimate copepod feeding. Mar Biol 153:565–577

    Article  CAS  Google Scholar 

  • Paradis AR, Pepin P, Brown JA (1996) Vulnerability of fish eggs and larvae to predation: review of the influence of the relative size of prey and predator. Can J Fish Aquat Sci 53:1226–1235

    Article  Google Scholar 

  • Pepin P (2006) Estimating the encounter rate of Atlantic capelin (Mallows villosus) with fish eggs, based on stomach content analysis. Fish B-Noaa 104:204–214

    Google Scholar 

  • Persson LA, De Roos M, Byström P (2007) State-dependent invasion windows for prey in size-structured predator–prey systems: whole lake experiments. J Anim Ecol 76:94–104

    Article  Google Scholar 

  • Pimm SL, Rice JC (1987) The dynamics of multi-species, multi-life stage models of aquatic food webs. Theor Pop Biol 32:303–325

    Article  Google Scholar 

  • Plagányi ÉE (2007) Models for an ecosystem approach to fisheries. FAO fisheries technical paper. No. 477. FAO, Rome, p 108

    Google Scholar 

  • Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Ann Rev Ecol Syst 20:297–330

    Article  Google Scholar 

  • Pörtner HO, Peck MA (2010) Climate change impacts on fish and fisheries: towards a cause and effect understanding. J Fish Biol 77:1745–1779

    Article  Google Scholar 

  • Rice JC (1995) Food web theory, marine food webs, and what climate change may do to northern marine fish populations. In: Beamish RJ (ed), Climate change and northern fish populations, vol 121. Canadian Special Publication of Fisheries and Aquatic Sciences. pp 561–568

  • Ricker WE (1958) Handbook of computation for biological statistics of fish populations. Bulletin 119 of the Fisheries Resource Board, Canada

    Google Scholar 

  • Schröder A, Nilsson K, Persson L, van Kooten T, Reichstein B (2009) Invasion success depends on invader body size in a size-structured mixed predation—competition community. J Anim Ecol 78:1152–1162

    Article  Google Scholar 

  • Schwartzlose RA, Alheit J, Bakun A, Baumgartner TR, Cloete R, Crawford RJM, Fltecher WJ, Green-Ruiz Y, Hagen E, Kawasaki T, lluch-Belda D, Lluch-Cota SE, MacCall AD, Matsuura Y, Nevarez-Martinez MO, Parrish RH, Roy C, Serra R, Shust KV, Ward MN, Zuzunaga JZ (1999) Worlwide large-scale fluctuations of sardine and anchovy populations. S Afr J Mar Sci 21:289–347

    Article  Google Scholar 

  • Sheppard SK, Harwood JD (2005) Advances in molecular predator—prey ecology. Funct Ecol 19:751–762

    Article  Google Scholar 

  • Shin YJ, Cury P (2004) Using an individual-based model of fish assemblages to study the response of size spectra to changes in fishing. Can J Fish Aquat Sci 61:414–431

    Article  Google Scholar 

  • Takasuka A, Oozeki Y, Aoki I (2007) Optimal growth temperature hypothesis: why do anchovy flourish and sardine collapse or vice versa under the same ocean regime? Can J Fish Aquat Sci 64:768–776

    Article  Google Scholar 

  • Takasuka A, Oozeki Y, Kubota H, Lluch-Costa SE (2008) Contrasting spawning temperature optima: Why are anchovy and sardine regime shifts synchronous across the North Pacific? Prog Oceanogr 77(2–3):225–232

    Article  Google Scholar 

  • Titelman J, Gandon L, Goarant A, Nilsen T (2007) Intraguild predatory interactions between the jellyfish Cyanea capillata and Aurelia aurita. Mar Biol 152:745–756

    Article  Google Scholar 

  • Valdés J, Ortlieb L, Gutierrez LM, Vargas G, Siffedine A (2008) Two hundred and fifty years of sardine and anchovy scale deposition record in Mejillones Bay, northern Chile. Prog Oceanogr 79(2–4):198–207

    Article  Google Scholar 

  • Valdes-Szeinfeld E (1991) Cannibalism and intraguild predation in clupeoids. Mar Ecol Prog Ser 79:17–26

    Article  Google Scholar 

  • van de Wolfshaar KE, de Roos AM, Persson L (2006) Size-dependent interactions inhibit coexistence in intraguild predation systems with life-history omnivory. Am Nat 168:62–75

    Article  Google Scholar 

  • van der Hammen T, De Roos AM, Sabelis MW, Janssen A (2010) Order of invasion affects the spatial distribution of a reciprocal intraguild predator. Oecologia 163:79–89

    Article  Google Scholar 

  • Van der Lingen CD, Hutchings L, Field JG (2006) Comparative trophodynamics of anchovy Engraulis encrasicolus and sardine Sardinops sagax in the southern Benguela: are species alternations between small pelagic fish trophodinamically mediated ? Afr J Mar Sci 28:465–478

    Article  Google Scholar 

  • Walters C, Kitchell J (2001) Cultivation/depensation effects on juvenile survival and recruitment: implications for the theory of fishing. Can J Fish Sci 58:39–50

    Article  Google Scholar 

  • Woodward G, Hildrew AG (2002) Body-size determinants of niche overlap and intraguild predation within a complex food web. J Anim Ecol 71:1063–1074

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the project ECOANCHOA promoted by the Department of Agriculture and Fisheries of the Basque Country Government (FEP funding) and the 7th framework project FACTS (FP7-KBBE-2009-3, grant agreement 244966). Thanks are due to Myron Peck for useful comments on the manuscript and Paul de Bruyn for his help with the English language. This is contribution no 539 from AZTI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xabier Irigoien.

Additional information

Communicated by M. A. Peck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irigoien, X., de Roos, A. The role of intraguild predation in the population dynamics of small pelagic fish. Mar Biol 158, 1683–1690 (2011). https://doi.org/10.1007/s00227-011-1699-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1699-2

Keywords

Navigation