Skip to main content
Log in

Mitochondrial and microsatellite assessment of population structure of South American sea lion (Otaria flavescens) in the Southwestern Atlantic Ocean

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Several major breeding areas have been defined for the South American sea lion (Otaria flavescens) along the Atlantic Ocean including the Uruguayan and Patagonian coasts. Together with a documented and severe reduction in population sizes caused by commercial hunting in the last century, these areas show opposite population trends. While Patagonian populations are recovering since hunting ceased, Uruguayan populations are declining. In this context, population genetic structure and genetic diversity were studied for the first time with both nuclear (microsatellites) and mitochondrial (control region) markers together. Alternative scenarios were found for both markers. While mitochondrial marker showed geographically structured populations, the nuclear loci showed a lack of geographical structure. These opposite patterns in genetic structure could be explained by female phylopatry and high male dispersion. The reduction in population size caused by commercial hunting did not leave a detectable footprint of bottleneck at the genetic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen PJ, Amos W, Pomeroy PP, Twiss SD (1995) Microsatellite variation in grey seals (Halichoerus grypus) shows evidence of genetic differentiation between 2 British breeding colonies. Mol Ecol 4:653–662

    Article  CAS  Google Scholar 

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishing, Malden

    Google Scholar 

  • Amos W, Hoelzel AR (1991) Long-term preservation of whale skin for DNA analysis. Rep Int Whaling Comm 13:99–104 (special issue)

    Google Scholar 

  • Artico LO, Bianchini A, Grubel KS, Monteiro DS, Estima SC, de Oliveira LR, Bonatto SL, Marins LF (2010) Mitochondrial control region haplotypes of the South American sea lion Otaria flavescens (Shaw, 1800). Braz J Med Biol Res 43:816–820

    Article  CAS  Google Scholar 

  • Avise JC (1995) Mitochondrial DNA polymorphism and a connection between genetics and demography of relevance to conservation. Conserv Biol 9:686–690

    Article  Google Scholar 

  • Avise JC (2004) Molecular markers: natural history and evolution, 2nd edn. Chapman and Hall, Nueva York

    Google Scholar 

  • Bickham JW, Loughlin TR, Wickliffe JK, Burkanov VN (1998) Geographic variation in the mitochondrial DNA of Steller sea lions: haplotype diversity and endemism in the Kuril Islands. Biosph Conserv 1:107–117

    Google Scholar 

  • Bos DH, Gopurenko D, Williams RN, De Woody JA (2008) Inferring population history and demography using microsatellites, mitochondrial DNA, and major histocompatibility complex (MHC) genes. Evolution 62:1458–1468

    Article  CAS  Google Scholar 

  • Burg TM, Trites AW, Smith MJ (1999) Mitochondrial and microsatellite DNA analyses of harbour seal population structure in the northeast Pacific Ocean. Can J Zool 77:930–943

    Article  CAS  Google Scholar 

  • Carrara IS (1952) Lobos marinos, pingüinos y guaneras de las costas del litoral marítimo e Islas adyacentes de la República Argentina. Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina, Reporte técnico #184753/49

  • Coltman DW, Stenson G, Hammill MO, Haug T, Davids CS, Fulton TL (2007) Panmictic population structure in the hooded seal (Cystophora cristata). Mol Ecol 16:1639–1648

    Article  CAS  Google Scholar 

  • Corcuera J, Monzón F, Crespo EA, Aguilar A, Raga JA (1994) Interactions between marine mammals and coastal fisheries of Necochea and Claromecó (Buenos Aires Province, Argentina). Int Whal Comm Special Issue 15:283–290

    Google Scholar 

  • Cornuet JM, Luikart G (1997) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    Google Scholar 

  • Crespo EA, Pedraza SN (1991) Estado actual y tendencia de la población de lobos marinos de un pelo (Otaria flavescens) en el litoral norpatagónico. Ecol Aust 1:87–95

    Google Scholar 

  • Crespo EA, Pedraza SN, Dans SL, Koen Alonso M, Reyes LM, Garcia NA, Coscarella M, Schiavini ACM (1997) Direct and indirect effects of the highseas fisheries on the marine mammal populations in the northern and central patagonian coast. J Northwest Atl Fish Sci 22:189–207

    Article  Google Scholar 

  • Crespo EA, Dans SL, Koen-Alonso M, Pedraza SN (2007) Interacciones entre mamíferos marinos y pesquerías. In: El Mar Argentino y sus recursos pesqueros, Tomo 5 El Ecosistema Marino. INIDEP, pp 151–169

  • Dans SL, Crespo EA, Pedraza SN, Koen-Alonso M (2004) Recovery of the southern American sea lion population in northern Patagonia. Can J Fish Aquat Sci 61:1681–1690

    Article  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  Google Scholar 

  • Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13:853–864

    Article  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes, application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  Google Scholar 

  • Fay JC, Wu CI (1999) A human population bottleneck can account for the discordance between patterns of mitochondrial vs. nuclear DNA variation. Mol Biol Evol 16:1003–1005

    CAS  Google Scholar 

  • Filatov DA (2002) ProSeq: a software for preparation and evolutionary analysis of DNA sequence data sets. Mol Ecol Notes 2:621–624

    Article  CAS  Google Scholar 

  • Fisher RA (1922) On the dominance ratio. Proc Roy Soc Edinb 42:321–341

    Google Scholar 

  • Freilich SY (2004) Genetic diversity and population genetic structure in the South American Sea Lion (Otaria flavescens) from Argentina and the Falkland Islands. Doctoral thesis, University of Durham, UK

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  Google Scholar 

  • Gaggiotti OE, Vetter RD (1999) Effect of life history strategy, environmental variability, and overexploitation on the genetic. Can J Fish Aquat Sci 56:1376–1388

    Google Scholar 

  • Gemmell NJ, Allen PJ, Goodman SJ, Reed JZ (1997) Interspecific mocrosatellite markers for the study of pinniped populations. Mol Ecol 6:661–666

    Article  CAS  Google Scholar 

  • Giardino G, Mandiola MA, Bastida R, Rodríguez D (2009) Movimientos estivales de machos de Otaria flavescens entre Puerto Quequén (Argentina), Uruguay y Patagonia. WP 13 In: Crespo EA, Oliva D, Dans SL y Sepúlveda M (ed) Informe del Taller Estado de situation del lobo marino común en su área de distribución

  • Godoy JC (1963) Fauna silvestre. Consejo Federal de inversiones. Serie Evaluación de los Recursos Naturales de Argentina 8:1–299

    Google Scholar 

  • González-Suárez M, Flatz R, Aurioles-Gamboa D, Hedrick PW, Gerber LR (2009) Isolation by distance among California sea lion populations in Mexico: redefining management stocks. Mol Ecol 18:1088–1099

    Article  Google Scholar 

  • Goodman SJ (1997) Dinucleotide repeat polymorphisms at seven anonymous microsatellite loci cloned from the European harbour seal (Phoca vitulina vitulina). Anim Genet 28:310–311

    CAS  Google Scholar 

  • Grandi MF, Dans SL, Crespo EA (2008) Social composition and spatial distribution of colonies in an expanding population of South America sea lion. J Mammal 89:1218–1228

    Article  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  CAS  Google Scholar 

  • Haldane JBS (1954) An exact test for randomness of mating. J Genet 52:631–635

    Google Scholar 

  • Hernández-Camacho CJ, Aurioles-Gamboa D, Gerber LR (2008) Age-specific birth rates of California sea lions (Zalophus californianus) in the Gulf of California, Mexico. Mar Mammal Sci 24:664–676

    Article  Google Scholar 

  • Hoelzel AR, Halley J, O’Brien SJ, Campagna C, Arnbom T, Le Boef B, Ralls K, Dover GA (1993) Elephant seal genetic variation and the use of simulation models to investigate historical population genetics. J Hered 84:443–449

    CAS  Google Scholar 

  • Hoelzel AR, Campagna C, Arnbom T (2001) Genetic and morphometric differentiation between island and mainland southern elephant seal populations. P Roy Soc Lond B Bio 268:325–332

    Article  CAS  Google Scholar 

  • Hoffman JI, Matson CW, Amos W, Loughlin TR, Bickham JW (2006) Deep genetic subdivision within a continuously distributed and highly vagile marine mammal, the Steller’s sea lion (Eumetopias jubatus). Mol Ecol 15:2821–2832

    Article  CAS  Google Scholar 

  • Hoffman JI, Steinfartz S, Wolf JB (2007) Ten novel dinucleotide microsatellite loci cloned from the Galápagos sea lion (Zalophus californianus wollebaeki) are polymorphic in other pinniped species. Mol Ecol Notes 7:103–105

    Article  CAS  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Hubisz M, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Koen-Alonso M, Yodzis P (2005) Multispecies modelling of some components of the marine community of northern and central Patagonia, Argentina. Can J Fish Aquat Sci 62:1490–1512

    Article  Google Scholar 

  • Kretzmann MB, Gemmell NJ, Meyer A (2001) Microsatellite analysis of population structure in the endangered Hawaiian monk seal. Conserv Biol 15:457–466

    Google Scholar 

  • Kuhner MK, Beerli P, Yamato J, Felsenstein J (2000) Usefulness of single nucleotide polymorphism data for estimating population parameters. Genetics 156:439–447

    CAS  Google Scholar 

  • Lessa EP, D’Elía G, Pardiñas UFJ (2010) Genetic footprints of late quaternary climate change in the diversity of Patagonian-Fueguian rodents. Mol Ecol 19:3031–3037

    Article  Google Scholar 

  • Luikart G (1997) Usefulness of molecular markers for detecting population bottlenecks and monitoring genetic change. Tesis Doctoral. University of Montana, Missoula

  • Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol Ecol 7:963–974

    Article  CAS  Google Scholar 

  • Lukoschek V, Waycott M, Keogh JS (2008) Relative information content of polymorphic microsatellites and mitochondrial DNA for inferring dispersal and population genetic structure in the olive sea snake, Aipysurus laevis. Mol Ecol 17:3062–3077

    Article  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  Google Scholar 

  • Matthee CA, Fourie F, Oosthuizen WH, Meyër MA, Tolley KA (2006) Mitochondrial DNA sequence data of the Cape fur seal (Arctocephalus pusillus pusillus) suggest that population numbers may be affected by climatic shifts. Mar Biol 148:899–905

    Article  CAS  Google Scholar 

  • Mercer JH (1968) Antarctic ice and Sangamon sea level. IAHS Symposia 79:217–225

    Google Scholar 

  • Miller S, Dikes D, Polesky H (1988) A simple salting out procedure for extracting DNA for human nucleated cells. Nucleic Acids Res 16:215

    Google Scholar 

  • Moritz C (1994) Applications of mitochondrial DNA analysis in conservation: a critical review. Mol Ecol 3:401–411

    Article  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Oliveira LR, Meyer D, Hoffman J, Majluf P, Morgante JS (2009) Evidence of a genetic bottleneck in an El Niño affected population of South American fur seals, Arctocephalus australis. J Mar Biol Assoc UK 89:1717–1725

    Article  Google Scholar 

  • Páez E (2006) Situación de la administración del recurso lobos y leones marinos en Uruguay. In: Menafra R, Rodríguez-Gallego L, Scarabino F, Conde D (eds) En Bases para la conservación y el manejo de la costa uruguaya. Vida Silvestre, Sociedad Uruguaya para la Conservación de la Naturaleza, Montevideo, pp 577–583

  • Phillips CD, Trujillo RG, Gelatt TS, Smolen MJ, Matson CW, Honeycutt RL, Patton JC, Bickham JW (2009) Assessing substitution patterns, rates and homoplasy at HVRI of Steller sea lions, Eumetopias jubatus. Mol Ecol 18:3379–3393

    Article  CAS  Google Scholar 

  • Primmer CR, Ellegren H, Saino N, Moller AP (1996) Directional evolution in germline microsatellite mutations. Nat Genet 13:391–393

    Article  CAS  Google Scholar 

  • Pritchard J, Stephens M, Donelly P (2000) Inference of population structure using multilocus data. Genetics 155:945–959

    CAS  Google Scholar 

  • Rabassa J (2008) The late Cenozoic of Patagonia and Tierra del Fuego, 1st edn. Elsevier Science Publishers BV, Amsterdam

    Google Scholar 

  • Ramos-Onsins S, Rozas J (2002) Statistical properties of new neutrality test against population growth. Mol Biol Evol 19:2092–2100

    CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP Version 1.2: population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reyes L (2004) Estado actual y tendencia de la población de lobos marinos de un pelo del centro de Patagonia. XIX Jornadas Argentinas de Mastozoología. Puerto Madryn, Argentina

  • Reyes LM, Crespo EA, Szapkievich V (1999) Distribution and population size of the southern sea lion (Otaria flavescens) in central and southern Chubut, Patagonia, Argentina. Mar Mammal Sci 15:478–493

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Riedmann M (1990) The pinnipeds; seals, sea lions, and walruses. University of California Press, Berkeley

    Google Scholar 

  • Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49:608–615

    Article  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  Google Scholar 

  • Rosas FCW, Pinedo MC, Marmontel M, Haimovici M (1994) Seasonal movements of the South American sea lion (Otaria flavescens, Shaw) off the Rio Grande do Sul coast, Brazil. Mammalia 58:51–59

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Schneider S, Excoffier L (1999) Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089

    CAS  Google Scholar 

  • Slatkin M, Maddison WP (1990) Detecting isolation by distance using phylogenies of genes. Genetics 126:249–260

    CAS  Google Scholar 

  • Szapkievich VB, Capozzo HL, Crespo EA, Bernabeu RO, Comas C, Mudry M (1999) Genetic relatedness in two southern sea lion (Otaria Flavescens) rookeries in the southwestern Atlantic. Mamm Biol 54:246–250

    Google Scholar 

  • Szteren D, Páez E (2002) Predation of southern sea lions (Otaria flavescens) in artisanal fishing operations in Uruguay. Mar Freshwater Res 53:1161–1167

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876

    Article  CAS  Google Scholar 

  • Thompson D, Strange I, Riddy M, Duck CD (2005) The size and status of the population of southern sea lions Otaria flavescens in the Falkland Islands. Biol Conserv 121:357–367

    Article  Google Scholar 

  • Túnez JI, Centrón D, Cappozzo HL, Cassini MH (2007) Geographic distribution and diversity of mitochondrial DNA haplotypes in South American sea lions (Otaria flavescens) and fur seals (Arctocephalus australis). Mamm Biol 72:193–203

    Article  Google Scholar 

  • Túnez JI, Cappozzo HL, Cassini MH (2008) Natural and anthropogenic factors associated with the distribution of South American sea lion along the Atlantic coast. Hydrobiologica 598:191–202

    Article  Google Scholar 

  • Túnez JI, Cappozzo HL, Nardelli M, Cassini MH (2010) Population genetic structure and historical population dynamics of the South American sea lion, Otaria flavescens, in north-central Patagonia. Genetica 138:831–841

    Article  Google Scholar 

  • Vaz-Ferreira R (1976) Otaria flavescens (Shaw) South American sea lion. Advisory commitee on marine resources research. Scientific Consultation on Marine Mammals. Bergen, Norway. 48:1–20

  • Vaz-Ferreira R (1982) Otaria flavescens (Shaw) South American sea lion. En Mammals in the Seas. In: FAO and UNEP (ed) Smalls cetaceans, seals, sirenians and otters. FAO Fisheries series, Rome, pp 477–495

  • Wakeley J, Hey J (1997) Estimating ancestral population parameters. Genetics 145:847–855

    CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wlasiuk G, Graza JC, Lessa EP (2003) Genetic and geographic differentiation in the Rio Negro tuco-tuco (Ctenomys rionegrensis): inferring the roles of migration and drift from multiple genetic markers. Evolution 57:913–926

    Google Scholar 

  • Wolf JBW, Tautz D, Trillmich F (2007) Galápagos and Californian sea lions are separate species: genetic analysis of the genus Zalophus and its implications for conservation management. Front Zool 4:20

    Article  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  Google Scholar 

  • Wynen LP, Goldsworthy S, Insley SJ, Adams M, Bickham JW, Francis J, Gallo JP, Hoelzel AR, Majluf P, White RW, Slade R (2001) Phylogenetic relationships within the eared seals (Otariidae: Carnivora): implications for the historical biogeography of the family. Mol Phylogenet Evol 21:270–284

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to many people and institutions that collaborated in this research. We thank Centro Nacional Patagónico (CONICET, National Research Council of Argentina) and the University of Patagonia for the institutional and logistical, support given throughout this study. We also thank to Valentina Franco, Federico Riet, Sabrina Riveron and Cecilia Lezama and to the members of the Marine Mammal Laboratory of CENPAT, in particular to S. Dans, F. Grandi, N. García, S. Leonardi, G. Svendsen, D. Vales, L. Oliveira and M. Drago for helping to collect samples in the field. Financial support was given by Agencia Nacional de Promoción Científica y Tecnológica (PICT N° 4030/1999 and PICT N° PICT 33934/2007), Fundación BBVA (BIOCON 04), Fundación Vida Silvestre Argentina, Zoo d’Amneville, and Project PNUD ARG-02/018 (B-B27), Agencia Nacional de Investigación e Innovación (ANII FCE2007-267). At the time this manuscript was written, R.L.C. was supported by a PhD Fellowship from National Research Council of Argentina (CONICET) and M.F. a scholarship by PEDECIBA-ANII. We also thank to the Government Agencies of Chubut, Santa Cruz and Río Negro Provinces. Special and immense thanks to all the members from the Sección Evolución who supported this work in all stages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Feijoo.

Additional information

Communicated by T. Reusch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feijoo, M., Lessa, E.P., Loizaga de Castro, R. et al. Mitochondrial and microsatellite assessment of population structure of South American sea lion (Otaria flavescens) in the Southwestern Atlantic Ocean. Mar Biol 158, 1857–1867 (2011). https://doi.org/10.1007/s00227-011-1697-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1697-4

Keywords

Navigation