Skip to main content
Log in

Physiological responses of horseshoe crab (Limulus polyphemus) embryos to osmotic stress and a possible role for stress proteins (HSPs)

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

We tested the effects of osmotic stress on survival, developmental rate, and level of HSPs on American horseshoe crab (Limulus polyphemus) embryos. Animals were maintained in the laboratory at an ambient salinity of 20 ppt and then exposed to 4-h osmotic shocks at salinities of 10, 30, 40, 50, and 60 ppt, with a control group at 20 ppt. Horseshoe crab embryos had 100% developmental success (defined as individuals reaching the first instar or trilobite larval stage) at all salinities. However, osmotic stresses, especially hyperosmotic conditions, slowed the rate of development. Embryos subjected to osmotic stress showed higher levels of HSP70 and HSP90 than control animals kept at a salinity of 20 ppt. HSPs are of value to horseshoe crab embryos in surviving the fluctuating salinities that are typical of estuarine beach habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barlow RB, Powers MK, Howard H, Kass L (1986) Migration of Limulus for mating: relation to lunar phase, tide height, and sunlight. Biol Bull 171:310–329

    Article  Google Scholar 

  • Bonaventura R, Poma V, Russo R, Zito F, Matranga V (2006) Effects of UV-B radiation on development and hsp70 expression in sea urchin cleavage embryos. Mar Biol 149:79–86

    Article  CAS  Google Scholar 

  • Botton ML, Loveland RE (2003) Abundance and dispersal potential of horseshoe crab (Limulus polyphemus) larvae in the Delaware estuary. Estuaries 26:1472–1479

    Article  Google Scholar 

  • Botton ML, Loveland RE, Jacobsen TR (1994) Site selection by migratory shorebirds in Delaware Bay, and its relationship to beach characteristics and abundance of horseshoe crab eggs Limulus polyphemus eggs. Auk 111:605–616

    Google Scholar 

  • Botton ML, Pogorzelska M, Smoral L, Shehata A, Hamilton MG (2006) Thermal biology of horseshoe crab embryos and larvae: a role for heat shock proteins. J Exp Mar Biol Ecol 336:65–73

    Article  CAS  Google Scholar 

  • Botton ML, Tankersley RA, Loveland RE (2010) Developmental ecology of the American horseshoe crab Limulus polyphemus. Curr Zool 56:550–562

    Google Scholar 

  • Briggs RT, Moss BL (1997) Ultrastructure of the coxal gland of the horseshoe crab Limulus polyphemus: evidence for ultrafiltration and osmoregulation. J Morphol 234:233–252

    Article  Google Scholar 

  • Brockmann HJ (2003) Male competition and satellite behavior. In: Shuster CN Jr, Barlow RB, Brockmann HJ (eds) The American horseshoe crab. Harvard University Press, Cambridge, pp 50–82

  • Brockmann HJ, Smith MD (2009) Reproductive competition and sexual selection in horseshoe crabs. In: Tanacredi JT, Botton ML, Smith DR (eds) Biology and conservation of horseshoe crabs. Springer, New York, pp 199–221

    Chapter  Google Scholar 

  • Chapple JP, Smerdon GR, Hawkins AJS (1997) Stress-protein induction in Mytilus edulis: tissue-specific responses to elevated temperature reflect relative vulnerability and physiological function. J Exp Mar Biol Ecol 217:225–235

    Article  CAS  Google Scholar 

  • Chatterji A, Kotnala S, Mathew R (2004) Effects of salinity on larval growth of horseshoe crab, Tachypleus gigas (Müller). Curr Sci 87:248–250

    Google Scholar 

  • Defeo O, McLachlan A (2005) Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multi-scale analysis. Mar Ecol Prog Ser 295:1–20

    Article  Google Scholar 

  • DeJong L, Moreau X, Jean S, Scher O, Thiéry A (2006) Expression of the heat shock protein Hsp70 in chloride target cells of mayfly larvae from motorway retention pond: a biomarker of osmotic shock. Sci Total Environ 366:164–173

    Article  CAS  Google Scholar 

  • Diamant S, Eliahu N, Rosenthal D, Goloubinoff P (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586–39591

    Article  CAS  Google Scholar 

  • Dong Y, Dong S, Meng X (2008) Effects of thermal and osmotic stress on growth, osmoregulation and Hsp70 in sea cucumber (Apostichopus japonicus Selenka). Aquaculture 276:179–186

    Article  CAS  Google Scholar 

  • Drew B, Miller D, Toop T, Hanna P (2001) Identification of expressed HSP’s in blacktip abalone (Haliotus rubra Leach) during heat and salinity stresses. J Shellfish Res 20:695–703

    Google Scholar 

  • Ehlinger GS, Tankersley RA (2003) Larval hatching in the horseshoe crab, Limulus polyphemus: Facilitation by environmental cues. J Exp Mar Biol Ecol 292:199–212

    Article  Google Scholar 

  • Ehlinger GS, Tankersley RA (2004) Survival and development of horseshoe crab (Limulus polyphemus) embryos and larvae in hypersaline conditions. Biol Bull 206:87–94

    Article  Google Scholar 

  • Ehlinger GS, Tankersley RA (2009) Ecology of horseshoe crabs in microtidal lagoons. In: Tanacredi JT, Botton ML, Smith DR (eds) Biology and conservation of horseshoe crabs. Springer, New York, pp 149–162

    Chapter  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann Rev Physiol 61:243–282

    Article  CAS  Google Scholar 

  • Hayakawa M, Tanimoto S, Kondo A, Nakazawa T (1985) Changes in osmotic pressure and swelling in horseshoe crab embryos during development. Dev Growth Differ 27:51–56

    Article  Google Scholar 

  • Henry RP, Jackson SA, Mangum CP (1996) Ultrastructure and transport-related enzymes of the gills and coxal gland of the horseshoe crab, Limulus polyphemus. Biol Bull 191:241–250

    Article  CAS  Google Scholar 

  • Ireland HE, Harding SJ, Bonwick GA, Jones M, Smith CJ, Williams JHH (2004) Evaluation of heat shock protein 70 as a biomarker of environmental stress in Fucus serratus and Lemna minor. Biomarkers 9:139–155

    Article  Google Scholar 

  • Jegla TC, Costlow JD (1982) Temperature and salinity effects on developmental and early posthatch stages of Limulus. In: Bonaventura J, Bonaventura C, Tesh S (eds) Physiology and biology of horseshoe crabs. Alan R. Liss, New York, pp 103–113

    Google Scholar 

  • Kabani M, Martineau CN (2008) Multiple Hsp70 isoforms in the eukaryotic cytosol: mere redundancy or functional specificity? Curr Genomics 9:338–348

    Article  CAS  Google Scholar 

  • Laughlin R (1981) Sodium chloride and water exchange in selected developmental stages of the horseshoe crab, Limulus polyphemus (Linnaeus). J Exp Mar Biol Ecol 52:135–146

    Article  Google Scholar 

  • Laughlin R (1983) The effects of temperature and salinity on larval growth of the horseshoe crab Limulus polyphemus. Biol Bull 164:93–103

    Article  Google Scholar 

  • Lewis S, Handy RD, Cordy B, Billingshurst Z, Depledge MH (1999) Stress proteins (HSP’s): methods of detection and their use as an environmental biomarker. Ecotoxicology 8:351–368

    Article  CAS  Google Scholar 

  • LI-COR Biosciences (2008) Biotechnology product line-Odyssey. http://www.licor.com/bio/odyssey/index.jsp. Accessed 21 Dec 2008

  • Matsumoto JK, Martin KLM (2008) Lethal and sublethal effects of altered sand salinity on embryos of beach-spawning California grunion. Copeia 2008(2):484–491

    Article  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  Google Scholar 

  • McManus JJ (1969) Osmotic relations in the horseshoe crab, Limulus polyphemus. Am Midl Nat 81:569–573

    Article  Google Scholar 

  • Mizrahi DS, Peters KA (2009) Relationships between sandpipers and horseshoe crab in Delaware Bay: a synthesis. In: Tanacredi JT, Botton ML, Smith DR (eds) Biology and conservation of horseshoe crabs. Springer, New York, pp 65–87

    Chapter  Google Scholar 

  • Mukhopadhyay I, Nazir A, Saxena DK, Chowdhuri DK (2003) Heat shock response: hsp70 in environmental monitoring. J Biochem Mol Toxicol 17:249–254

    Article  CAS  Google Scholar 

  • Nordstrom KF (1992) Estuarine beaches. Elsevier Applied Science, London

    Google Scholar 

  • O’Donnell MJ, Hammond LM, Hofmann GE (2009) Predicted impact of ocean acidification on a marine invertebrate: elevated CO2 alters response to thermal stress in sea urchin larvae. Mar Biol 156:439–446

    Article  Google Scholar 

  • Okazaki RK, Gillins MA, Duerden BJ, Hodges C, Record NR (2006) Osmotic induction of stress proteins in nemerteans. J Nat Hist 40:1035–1046

    Article  Google Scholar 

  • Pan F, Zarate JM, Tremblay GC, Bradley TM (2000) Cloning and characterization of salmon hsp90 cDNA: upregulation by thermal and hyperosmotic stress. J Exp Zool 287:199–212

    Article  CAS  Google Scholar 

  • Pollock LM, Hummon WD (1971) Cyclic changes in interstitial water content, atmospheric exposure, and temperature in a marine beach. Limnol Oceanogr 16:522–533

    Article  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Robertson JD (1970) Osmotic and ionic regulation in the horseshoe crab Limulus polyphemus (Linnaeus). Biol Bull 138:157–183

    Article  CAS  Google Scholar 

  • Robertson JD (1992) Ionic composition of the coxal gland secretion of Limulus polyphemus. Comp Biochem Physiol 102A:263–264

    Article  CAS  Google Scholar 

  • Sekiguchi K (1988) Embryonic development. In: Sekiguchi K (ed) Biology of horseshoe crabs. Science House, Tokyo, pp 145–181

    Google Scholar 

  • Shuster CN Jr (1982) A pictorial review of the natural history and ecology of the horseshoe crab Limulus polyphemus, with reference to other Limulidae. In: Bonaventura J, Bonaventura C, Tesh S (eds) Physiology and biology of horseshoe crabs: studies on normal and environmentally stressed animals. Alan R. Liss, New York, pp 1–52

    Google Scholar 

  • Shuster CN Jr, Botton ML (1985) A contribution to the population biology of horseshoe crabs, Limulus polyphemus (L.) in Delaware Bay. Estuaries 8:363–572

    Article  Google Scholar 

  • Sigma Chemical (2010) Product information monoclonal anti-heat shock protein 70 (HSP70) clone BRM-22. http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/Datasheet/2/h5147dat.Par.0001.File.tmp/h5147dat.pdf. Accessed 24 Aug 2010

  • Smith PR, Tremblay GC, Bradley TM (1999) Hsp70 and a 54 kDa protein (Osp54) are induced in salmon (Salmo salar) in response to hyperosmotic stress. J Exp Zool 284:286–298

    Article  CAS  Google Scholar 

  • Smith DR, Pooler PS, Swan BL, Michels S, Hall WR, Himchak P, Millard MJ (2002) Spatial and temporal distribution of horseshoe crab (Limulus polyphemus) spawning in Delaware Bay: implications for monitoring. Estuaries 25:115–125

    Article  Google Scholar 

  • Sørensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037

    Article  Google Scholar 

  • Spees JL, Chang SA, Snyder MJ, Chang ES (2002) Osmotic induction of stress-responsive gene expression in the lobster Homarus americanus. Biol Bull 203:331–337

    Article  CAS  Google Scholar 

  • Sreedhar AS, Kalmár E, Csermely P, Shen Y-F (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 562:11–15

    Article  Google Scholar 

  • Sugita H (1988) Environmental adaptations of embryos. In: Sekiguchi K (ed) Biology of horseshoe crabs. Science House, Tokyo, pp 195–224

    Google Scholar 

  • Taipale M, Jarosz DF, Lindquistg S (2010) HSP90 at the hub of protein homeostatis: emerging mechanistic insights. Nat Rev Mol Cell Bio 11:515–528

    Article  CAS  Google Scholar 

  • Tine M, Bonhomme F, McKenzie DJ, Durand J-D (2010) Differential expression of the heat shock protein Hsp70 in natural populations of the tilapia, Sarotherodon melanotheron, acclimatized to a range of environmental salinities. BMC Ecol 10:11

    Article  Google Scholar 

  • Tomanek L, Somero GN (2002) Interspecific- and acclimation-induced variation in levels of heat-shock proteins 70 (hsp70) and 90 (hsp90) and heat-shock transcription factor-1 (HSF1) in congeneric marine snails (genus Tegula): implications for regulation of hsp gene expression. J Exp Biol 205:677–685

    CAS  Google Scholar 

  • Towle DW, Henry RP (2003) Coping with environmental changes: physiological challenges. In: Shuster CN Jr, Barlow RB, Brockmann HJ (eds) The American horseshoe crab. Harvard Press, Cambridge, pp 224–244

    Google Scholar 

  • Towle DW, Mangum CP, Johnson BA, Mauro NA (1982) The role of the coxal gland in ionic, osmotic, and pH regulation in the horseshoe crab, Limulus polyphemus. In: Bonaventura J, Bonaventura C, Tesh S (eds) Physiology and biology of horseshoe crabs: studies on normal and environmentally stressed animals. Alan R. Liss, Inc., New York, pp 147–172

    Google Scholar 

  • Warren MK, Pierce SK (1982) Two cell volume regulatory systems in the Limulus myocardium: an interaction of ions and quaternary ammonium compounds. Biol Bull 163:504–516

    Article  CAS  Google Scholar 

  • Weber RG, Carter DB (2009) Distribution and development of Limulus egg clusters on intertidal beaches in Delaware Bay. In: Tanacredi JT, Botton ML, Smith DR (eds) Biology and conservation of horseshoe crabs. Springer, New York, pp 249–266

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was supported by the Department of Natural Sciences Fund for Student Research at Fordham University. We thank Dr. Gretchen Ehlinger and two anonymous reviewers for their thoughtful comments on this manuscript, and Dr. Robert Madden for assistance with the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Botton.

Additional information

Communicated by H. O. Pörtner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greene, M.P., Hamilton, M.G. & Botton, M.L. Physiological responses of horseshoe crab (Limulus polyphemus) embryos to osmotic stress and a possible role for stress proteins (HSPs). Mar Biol 158, 1691–1698 (2011). https://doi.org/10.1007/s00227-011-1682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1682-y

Keywords

Navigation