Marine Biology

, Volume 158, Issue 7, pp 1497–1509 | Cite as

Negligible evidence for regional genetic population structure for two shark species Rhizoprionodon acutus (Rüppell, 1837) and Sphyrna lewini (Griffith & Smith, 1834) with contrasting biology

  • Jennifer R. OvendenEmail author
  • Jess A. T. Morgan
  • Raewyn Street
  • Andrew Tobin
  • Colin Simpfendorfer
  • William Macbeth
  • David Welch
Original Paper


Biodiversity of sharks in the tropical Indo-Pacific is high, but species-specific information to assist sustainable resource exploitation is scarce. The null hypothesis of population genetic homogeneity was tested for scalloped hammerhead shark (Sphyrna lewini, n = 237) and the milk shark (Rhizoprionodon acutus, n = 207) from northern and eastern Australia, using nuclear (S. lewini, eight microsatellite loci; R. acutus, six loci) and mitochondrial gene markers (873 base pairs of NADH dehydrogenase subunit 4). We were unable to reject genetic homogeneity for S. lewini, which was as expected based on previous studies of this species. Less expected were similar results for R. acutus, which is more benthic and less vagile than S. lewini. These features are probably driving the genetic break found between Australian and central Indonesian R. acutus (F-statistics; mtDNA, 0.751–0.903, respectively; microsatellite loci, 0.038–0.047 respectively). Our results support the spatially homogeneous monitoring and management plan for shark species in Queensland, Australia.


Microsatellite Locus Null Allele Genetic Homogeneity Shark Species Scalloped Hammerhead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are indebted to the many fishers and scientists who collected tissue samples for this project, including those associated with the Marine and Tropical Science Research Facility project 4.8.4 (GBRWHA Inshore fisheries), James Cook University and the fisheries observer programmes in Queensland and New South Wales. The Australian Fisheries Research and Development Corporation supported this study (project 2007/035).

Supplementary material

227_2011_1666_MOESM1_ESM.doc (756 kb)
Supplementary material 1 (DOC 756 kb)


  1. Anon (2010) Annual status report 2009. East coast inshore fin fish fishery. Department of Employment, Economic Development and Innovation, BrisbaneGoogle Scholar
  2. Arevalo E, Davis S, Sites JJ (1994) Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Syst Biol 43:387–418CrossRefGoogle Scholar
  3. Barber PH, Bellwood DR (2005) Biodiversity hotspots: evolutionary origins of biodiversity in wrasses (Halichoeres: Labridae) in the Indo-Pacific and new world tropics. Mol Phylogenet Evol 35:235–253CrossRefGoogle Scholar
  4. Baum J, Clarke S, Domingo A, Ducrocq M, Lamónaca AF, Gaibor N, Graham R, Jorgensen S, Kotas JE, Medina E, Martinez-Ortiz J, Monzini Taccone di Sitizano J, Morales MR, Navarro SS, Pérez JC, Ruiz C, Smith W, Valenti SV, Vooren CM (2007) Sphyrna lewini. IUCN red list of threatened species. Accessed 11th Oct 2010
  5. Bourjea J, Lapegue S, Gagnevin L, Broderick D, Mortimer JA, Ciccione S, Roos D, Taquet C, Grizel H (2007) Phylogeography of the green turtle, Chelonia mydas, in the Southwest Indian Ocean. Mol Ecol 16:175–186CrossRefGoogle Scholar
  6. Broderick D, Ovenden JR, Buckworth RC, Newman SJ, Lester RJG, Welch DJ (2011) Genetic population structure of grey mackerel (Scomberomorus semifasciatus Macleay, 1883) in northern Australia. J Fish Biol (Submitted)Google Scholar
  7. Bruce BD (2008) The biology and ecology of the white shark Carcharodon carcharias. In: Cambi MD, Pikitch EK, Babcock EA (eds) Sharks of the open ocean. Blackwell, Oxford, pp 69–81CrossRefGoogle Scholar
  8. Chapman DD, Prodohl PA, Gelsleichter J, Manire CA, Shivji MS (2004) Predominance of genetic monogamy by females in a hammerhead shark, Sphyrna tiburo: implications for shark conservation. Mol Ecol 13:1965–1974CrossRefGoogle Scholar
  9. Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefGoogle Scholar
  10. Chapuis M-P, Lecoq M, Michalakis Y, Loiseau A, Sword GA, Piry S, Estoup A (2008) Do outbreaks affect genetic population structure? A worldwide survey in Locusta migratoria, a pest plagued by microsatellite null alleles. Mol Ecol 17:3640–3653CrossRefGoogle Scholar
  11. Charters RA, Lester RJG, Buckworth RC, Newman SJ, Ovenden JR, Broderick D, Kravchuk O, Ballagh A, Welch DJ (2010) The stock structure of grey mackerel Scomberomorus semifasciatus in Australia as inferred from its parasite fauna. Fish Res 101:94–99CrossRefGoogle Scholar
  12. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefGoogle Scholar
  13. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B-Methodol 39:1–38Google Scholar
  14. Duncan KM, Martin AP, Bowen BW, De Couet HG (2006) Global phylogeography of the scalloped hammerhead shark (Sphyrna lewini). Mol Ecol 15:2239–2251CrossRefGoogle Scholar
  15. Evans RD, van Herwerden L, Russ GR, Frisch AJ (2010) Strong genetic but not spatial subdivision of two reef fish species targeted by fishers on the Great Barrier Reef. Fish Res 102:16–25CrossRefGoogle Scholar
  16. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50CrossRefGoogle Scholar
  17. Farnsworth CA, Bellwood DR, van Herwerden L (2010) Genetic structure across the GBR: evidence from short-lived gobies. Mar Biol 157:945–953CrossRefGoogle Scholar
  18. Gallo V, Cavalcanti MJ, da Silva RFL, da Silva HMA, Pagnoncelli D (2010) Panbiogeographical analysis of the shark genus Rhizoprionodon (Chondrichthyes, Carcharhiniformes, Carcharhinidae). J Fish Biol 76:1696–1713CrossRefGoogle Scholar
  19. Inoue JG, Miya M, Tsukamoto K, Nishida M (2001) A mitogenomic perspective on the basal teleostean phylogeny: resolving higher-level relationships with longer DNA sequences. Mol Phylogenet Evol 20:275–285CrossRefGoogle Scholar
  20. Keeney DB, Heist EJ (2003) Characterization of microsatellite loci isolated from the blacktip shark and their utility in requiem and hammerhead sharks. Mol Ecol Notes 3:501–504CrossRefGoogle Scholar
  21. Keeney DB, Heist EJ (2006) Worldwide phylogeography of the blacktip shark (Carcharhinus limbatus) inferred from mitochondrial DNA reveals isolation of western Atlantic populations coupled with recent Pacific dispersal. Mol Ecol 15:3669–3679CrossRefGoogle Scholar
  22. Keeney DB, Heupel M, Hueter RE, Heist EJ (2003) Genetic heterogeneity among blacktip shark, Carcharhinus limbatus, continental nurseries along the US Atlantic and Gulf of Mexico. Mar Biol 143:1039–1046CrossRefGoogle Scholar
  23. Last PR, Stevens JD (2009) Sharks and rays of Australia. CSIRO Australia, CollingwoodGoogle Scholar
  24. Mendonca FF, Hashimoto DT, Porto-Foresti F, Oliveira C, Gadig OBF, Foresti F (2009) Identification of the shark species Rhizoprionodon lalandii and R. porosus (Elasmobranchii, Carcharhinidae) by multiplex PCR and PCR-RFLP techniques. Mol Ecol Resour 9:771–773CrossRefGoogle Scholar
  25. Morgan E (2000) Genepop on the web. Accessed 6th May 2009
  26. Nance HA, Daly-Engel TS, Marko PB (2009) New microsatellite loci for the endangered scalloped hammerhead shark, Sphyrna lewini. Mol Ecol Resour 9:955–957CrossRefGoogle Scholar
  27. Newman SJ, Wright IW, Rome BM, Mackie MC, Lewis PD, Buckworth RC, Ballagh AC, Garrett RN, Stapley J, Broderick D, Ovenden JR, Welch DJ (2010) Stock structure of Grey Mackerel, Scomberomorus semifasciatus (Pisces: Scombridae) across northern Australia, based on otolith stable isotope chemistry. Environ Biol Fish 89:357–367CrossRefGoogle Scholar
  28. Ovenden JR, Broderick D, Street R (2006) Microsatellite primers for two carcharinid sharks (Carcharinus tilstoni and C. sorrah) and their usefulness across a wide range of shark species. Mol Ecol Notes 6:415–418CrossRefGoogle Scholar
  29. Ovenden JR, Kashiwagi T, Broderick D, Giles J, Salini JP (2009) The extent of population genetic subdivision differs among four co-distributed shark species in the Indo-Australian archipelago. BMC Evol Biol 9:40CrossRefGoogle Scholar
  30. Ovenden JR, Morgan J, Kashiwagi T, Broderick D, Salini J (2010) Towards better management of Australia’s shark fishery: genetic analyses reveal unexpected ratios of cryptic blacktip species Carcharhinus tilstoni and C. limbatus. Mar Freshw Res 61:253–262CrossRefGoogle Scholar
  31. Pardini AT, Jones CS, Noble LR, Kreiser B, Malcolm H, Bruce BD, Stevens JD, Cliff G, Scholl MC, Francis M, Duffy CAJ, Martin AP (2001) Sex-biased dispersal of great white sharks—in some respects, these sharks behave more like whales and dolphins than other fish. Nature 412:139–140CrossRefGoogle Scholar
  32. Portnoy DS, McDowall JR, Thompson K, Musick JA, Graves JE (2006) Isolation and characterization of five dinucleotide microsatellite loci in the sandbar shark, Carcharhinus plumbeus. Mol Ecol Notes 6:431–433CrossRefGoogle Scholar
  33. Portnoy DS, Piercy AN, Musick JA, Burgess GH, Graves JE (2007) Genetic polyandry and sexual conflict in the sandbar shark, Carcharhinus plumbeus, in the western North Atlantic and Gulf of Mexico. Mol Ecol 16:187–197CrossRefGoogle Scholar
  34. Portnoy DS, McDowell JR, Heist EJ, Musick JA, Graves JE (2010) World phylogeography and male-mediated gene flow in the sandbar shark, Carcharhinus plumbeus. Mol Ecol 19:1994–2010CrossRefGoogle Scholar
  35. Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45CrossRefGoogle Scholar
  36. Quattro JM, Stoner DS, Driggers WB, Anderson CA, Priede KA, Hoppmann EC, Campbell NH, Duncan KM, Grady JM (2006) Genetic evidence of cryptic speciation within hammerhead sharks (Genus Sphyrna). Mar Biol 148:1143–1155CrossRefGoogle Scholar
  37. Randall JE (1998) Zoogeography of shore fishes of the Indo-Pacific region. Zool Stud 37:227–268Google Scholar
  38. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  39. Schluessel V, Broderick D, Collin SP, Ovenden JR (2010) Evidence of extensive population structure in the white spotted eagle ray Aetobatus narinari within the Indo-Pacific inferred from mitochondrial gene sequences. J Zool 281:46–55 (London)CrossRefGoogle Scholar
  40. Schroeder R, Simpfendorfer CA, Welch D (2011) Population structure of two inshore shark species (Sphyrna lewini and Rhizoprionodon acutus) using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) along the east coast of Queensland, Australia. In: Welch D, Ovenden JR, Simpfendorfer CA, Tobin A, Morgan J, Street R, White J, Harry A, Schroeder R, Macbeth GM (eds) Stock structure of exploited shark species in north-eastern Australia. Final Report to the Fisheries Research & Development Corporation, Project 2007/035. Fishing & Fisheries Research Centre Technical Report No. 12, Townsville, Australia, pp 39–48Google Scholar
  41. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234CrossRefGoogle Scholar
  42. Simpfendorfer CA (2003) Rhizoprionodon acutus. IUCN red list of threatened species. Accessed 11th Oct 2010
  43. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462PubMedPubMedCentralGoogle Scholar
  44. Sumpton WD, Ovenden JR, Keenan CP, Street R (2008) Evidence for a stock discontinuity of snapper (Pagrus auratus) on the East coast of Australia. Fish Res 94:92–98CrossRefGoogle Scholar
  45. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, SunderlandGoogle Scholar
  46. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  47. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370Google Scholar
  48. Wong EHK, Shivji MS, Hanner RH (2009) Identifying sharks with DNA barcodes: assessing the utility of a nucleotide diagnostic approach. Mol Ecol Resour 9:243–256CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Rights of Australia as represented by the Government of Queensland 2011

Authors and Affiliations

  • Jennifer R. Ovenden
    • 1
    Email author
  • Jess A. T. Morgan
    • 1
    • 2
  • Raewyn Street
    • 1
  • Andrew Tobin
    • 3
  • Colin Simpfendorfer
    • 3
  • William Macbeth
    • 4
  • David Welch
    • 3
  1. 1.Molecular Fisheries LaboratoryDepartment of Employment, Economic Development and Innovation, Queensland GovernmentSt. LuciaAustralia
  2. 2.Queensland Alliance for Agriculture and Food Innovation, and Animal Research InstituteThe University of QueenslandMoorookaAustralia
  3. 3.Fishing and Fisheries Research CentreJames Cook UniversityTownsvilleAustralia
  4. 4.Cronulla Fisheries CentreDepartment of Industry and Investment, New South Wales GovernmentCronullaAustralia

Personalised recommendations