Skip to main content

Advertisement

Log in

The functional biology and trophic role of krill (Thysanoessa raschii) in a Greenlandic fjord

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

An Erratum to this article was published on 03 July 2014

Abstract

Despite being a key zooplankton group, knowledge on krill biology from the Arctic is inadequate. The present study examine the functional biology and evaluate the trophic role of krill in the Godthåbsfjord (64°N, 51°W) SW Greenland, through a combination of fieldwork and laboratory experiments. Krill biomass was highest in the middle fjord and inner fjord, whereas no krill was found offshore. The dominating species Thysanoessa raschii revealed a type III functional response when fed with the diatom Thalassiosira weissflogii. At food saturation, T. raschii exhibited a daily ration of 1% body C d−1. Furthermore, T. raschii was capable of exploiting plankton cells from 5 to 400 μm, covering several trophic levels of the pelagic food web. The calculated grazing impact by T. raschii on the fjord plankton community was negligible. However, the schooling and migratory behaviour of krill will concentrate and elevate the grazing in specific areas of the euphotic zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Antezana T, Ray K, Melo C (1982) Trophic behavior of Euphausia superba Dana in laboratory conditions. Polar Biol 1:77–82

    Google Scholar 

  • Arendt KE, Nielsen TG, Rysgaard S, Tönnesson K (2010) Differences in plankton community structure along the Godthåbsfjord, from the Greenland Ice Sheet to offshore waters. Mar Ecol Prog Ser 401:49–62

    Article  CAS  Google Scholar 

  • Astthorsson OS, Gislason A (1997) Biology of euphausiids in the subarctic waters north of Iceland. Mar Biol 129:319–330

    Article  Google Scholar 

  • Atkinson A, Snÿder R (1997) Krill-copepod interactions at South Georgia, Antarctica, I. Omnivory by Euphausia superba. Marine Ecol Prog Ser 160:63–76

    Article  Google Scholar 

  • Atkinson A, Meyer B, Stubing D, Hagen W, Schmidt K, Bathmann UV (2002) Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter—II. Juveniles and adults. Limnol Oceanogr 47:953–966

    Article  Google Scholar 

  • Båmstedt U, Karlson K (1998) Euphausiid predation on copepods in coastal waters of the Northeast Atlantic. Marine Ecol Prog Ser 172:149–168

    Article  Google Scholar 

  • Båmstedt U, Gifford DJ, Irigoien X, Atkinson A, Roman M (2000) Feeding. In: Harris RP, Wiebe PH, Lenz J, Skjoldal HR, Huntley M (eds) ICES Zooplankton methodology manual. Academic, San Diego

    Google Scholar 

  • Berge J, Cottier F, Last KS, Varpe O, Leu E, Soreide J, Eiane K, Falk-Petersen S, Willis K, Nygard H, Vogedes D, Griffiths C, Johnsen G, Lorentzen D, Brierley AS (2009) Diel vertical migration of Arctic zooplankton during the polar night. Biol Lett 5:69–72

    Article  Google Scholar 

  • Berggreen U, Hansen B, Kiørboe T (1988) Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar Biol 99:341–352

    Article  Google Scholar 

  • Berkes F (1976) Ecology of Euphausiids in the Gulf of St. Lawrence. J Fish Res Board Can 33:1894–1905

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens HH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  Google Scholar 

  • Børsheim KY, Bratbak G (1987) Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Marine Ecol Prog Ser 36:171–175

    Article  Google Scholar 

  • Boyd CM, Heyraud M, Boyd CN (1984) Feeding of the Antarctic krill Euphausisa superba. J Crustac Biol 14:123–141

    Article  Google Scholar 

  • Brierley AS, Saunders RA, Bone DG, Murphy EJ, Enderlein P, Conti SG, Demer DA (2006) Use of moored acoustic instruments to measure short-term variability in abundance of Antarctic krill. Limnol Oceanogr Methods 4:18–29

    Article  Google Scholar 

  • Buchholz F, Saborowski R (2000) Metabolic and enzymatic adaptations in northern krill, Meganyctiphanes norvegica, and Antarctic krill, Euphausia superba. Santa Cruz, California, pp 115–129

    Google Scholar 

  • Cadee GC, Gonzalez H, Schnackschiel SB (1992) Krill diet affects fecal string settling. Polar Biol 12:75–80

    Google Scholar 

  • Clarke A, Morris DJ (1983) Towards an energy budget for krill: The physiology and biochemistry of Euphausia superba Dana. Polar Biol 2:69–86

    Article  Google Scholar 

  • Croxall JP, Everson I, Kooyman GL, Ricketts C, Davis RW (1985) Fur-seal diving behavior in relation to vertical distribution of krill. J Anim Ecol 54:1–8

    Article  Google Scholar 

  • Dalpadado P, Ellertsen B, Johannessen S (2008a) Inter-specific variations in distribution, abundance and reproduction strategies of krill and amphipods in the Marginal Ice Zone of the Barents Sea. Deep-Sea Res Part II Top Stud Oceanogr 55:2257–2265

    Article  Google Scholar 

  • Dalpadado P, Yamaguchi A, Ellertsen B, Johannessen S (2008b) Trophic interactions of macro-zooplankton (krill and amphipods) in the Marginal Ice Zone of the Barents Sea. Deep-Sea Res Part II Top Stud Oceanogr 55:2266–2274

    Article  Google Scholar 

  • Dutz J, Koski M, Jónasdóttir SH (2008) Copepod reproduction is unaffected by diatom aldehydes or lipid composition. Limnol Oceanogr 53:225–235

    Article  CAS  Google Scholar 

  • Falk-Petersen S, Hagen W, Kattner G, Clarke A, Sargent J (2000) Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Can J Fish Aquat Sci 57:178–191

    Article  CAS  Google Scholar 

  • Fenchel T (1974) Intrinsic rate of natural increase: the relationship with body size. Oecologia 14:317–326

    Article  Google Scholar 

  • Fotel FL, Jensen NJ, Wittrup L, Hansen BW (1999) In situ and laboratory growth by a population of blue mussel larvae (Mytilus edulis L.) from a Danish embayment, Knebel Vig. J Exp Mar Biol Ecol 233:213–230

    Article  Google Scholar 

  • Frost BW (1974) Feeding processes at lower trophic levels in pelagic communities. In: Miller CB (ed) The biology of the oceanic Pacific. Oregon State University, Corvallis, pp 59–77

    Google Scholar 

  • Frost BW (1975) A threshold feeding behavior in Calanus pacificus. Limnol Oceanogr 20:263–266

    Article  Google Scholar 

  • Gonzalez HE (1992) The distribution and abundance of krill faecal material and oval pellets in the Scotia and Weddell Seas (Antarctica) and their role in particle flux. Polar Biol 12:81–91

    Article  Google Scholar 

  • Gonzalez HE, Ortiz VC, Sobarzo M (2000) The role of faecal material in the particulate organic carbon flux in the northern Humboldt Current, Chile (23°S), before and during the 1997–1998 El Niño. J Plankton Res 22:499–529

    Article  Google Scholar 

  • Granéli E, Granéli W, Rabbani MM, Daugbjerg N, Fransz G, Roudy JC, Alder VA (1993) The influence of copepod and krill grazing on the species composition of phytoplankton communities from the Scotia Weddell Sea. Polar Biol 13:201–213

    Article  Google Scholar 

  • Guillard RRL, Hargraves PE (1993) Stichocrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234–236

    Article  Google Scholar 

  • Haberman KL, Ross RM, Quetin LB (2003) Diet of the Antarctic krill (Euphausia superba Dana): II. Selective grazing in mixed phytoplankton assemblages. J Exp Marine Biol Ecol 283:97–113

    Article  Google Scholar 

  • Hamner WM, Hamner PP, Strand SW, Gilmer RW (1983) Behavior of Antarctic krill, Euphausia superba: chemoreception, feeding, schooling, and molting. Science 220:433–435

    Article  CAS  Google Scholar 

  • Hamner WM, Hamner PP, Obst BS, Carleton JH (1989) Field observations on the ontogeny of schooling of Euphausia superba furciliae and its relationship to ice in Antarctic waters. Limnol Oceanogr 34:451–456

    Article  Google Scholar 

  • Hansen B, Verity P, Falkenhaug T, Tande KS, Norrbin F (1994) On the trophic fate of Phaeocystis pouchetti (Harriot). V. Trophic relationships between Phaeocystis and zooplankton: an assessment of methods and size dependence. J Plankton Res 16:487–511

    Article  Google Scholar 

  • Hansen PJ, Bjørnsen PK, Hansen BW (1997) Zooplankton grazing and growth: scaling within the 2–2, 000-μm body size range. Limnol Oceanogr 42:687–704

    Article  Google Scholar 

  • Haywood GJ, Burns CW (2003) Feeding response of Nyctiphanes australis (Euphausiacea) to various nanoplankton sizes and taxa. Mar Ecol Prog Ser 253:209–216

    Article  Google Scholar 

  • Heide-Jørgensen MP, Simon MJ, Laidre KL (2007) Estimates of large whale abundance in Greenlandic waters from a ship-based survey in 2005. J Cetacean Res Manage 92:95–104

    Google Scholar 

  • Hofmann EE, Lascara CM (2000) Modeling the growth dynamics of Antarctic krill Euphausia superba. Mar Ecol Prog Ser 194:219–231

    Article  Google Scholar 

  • Holling CS (1959a) The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can Entomol 31:293–320

    Article  Google Scholar 

  • Holling CS (1959b) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398

    Article  Google Scholar 

  • Hopkins CCE, Falk-Petersen S, Tande K, Eilertsen HC (1978) A preliminary study of zooplankton sound scattering layers in Balsfjorden: structure, energetics, and migrations. Sarsia 63:255–264

    Article  Google Scholar 

  • Huskin I, Anadón R, Álvarez-Marqués F, Harris RP (2000) Ingestion, faecal pellet and egg production rates of Calanus helgolandicus feeding coccolithophorid versus non-coccolithophorid diets. J Exp Mar Biol Ecol 248:239–254

    Article  CAS  Google Scholar 

  • Ikeda T, Kirkwood R (1989) Metabolism and body composition of two euphausiids (Euphausia superba and E.crystallorophias) collected from under the pack-ice off Enderby Land, Antarctica. Marine Biol 100:301–308

    Article  Google Scholar 

  • Ikeda T, Mitchell AW (1982) Oxygen uptake, ammonia excretion and phosphate excretion by krill and other Antarctic zooplankton in relation to their body size and chemical composition. Mar Biol 71:283–298

    Article  Google Scholar 

  • Jaspers C, Carstensen J (2009) Effect of acid Lugol solution as preservative on two representative chitineous and gelatinous zooplankton groups. Limnol Oceanogr Methods 7:430–435

    Article  CAS  Google Scholar 

  • Jensen LM, Rasch M (2008) Nuuk ecological research operations, 1st annual report 2007. Danish Polar Center, Copenhagen

    Google Scholar 

  • Jespersen AM, Christoffersen K (1987) Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiol 109:445–454

    CAS  Google Scholar 

  • Johnsson PR, Tiselius P (1990) Feeding behaviour, prey detection and capture efficincy of the copepod Acartia tonsa feeding on planktonic ciliates. Mar Ecol Prog Ser 60:35–44

    Article  Google Scholar 

  • Juul-Pedersen T, Nielsen TG, Michel C, Møller EF, Tiselius P, Thor P, Olesen M, Selander E, Gooding S (2006) Sedimentation following the spring bloom in Disko Bay, West Greenland, with special emphasis on the role of copepods. Mar Ecol Prog Ser 314:239–255

    Article  Google Scholar 

  • Kiørboe T (2008) A mechanistic approach to plankton ecology. Princeton University Press, Princeton

    Google Scholar 

  • Kiørboe T, Møhlenberg F, Nicolajsen H (1982) Ingestion rate and gut clearance in the planktonic copepod Centropages hamatus (Lilljeborg) in relation to food concentration and temperature. Ophelia 21:181–194

    Article  Google Scholar 

  • Kiørboe T, Saiz E, Viitasalo M (1996) Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar Ecol Prog Ser 143:65–75

    Article  Google Scholar 

  • Laidre KL, Heide-Jørgensen MP, Heagerty P, Cossio A, Bergström B, Simon M (2010) Spatial associations between large baleen whales and their prey in West Greenland. Mar Ecol Prog Ser 402:269–284

    Article  Google Scholar 

  • Levinsen H, Jefferson TT, Nielsen TG, Hansen BW (2000) On the trophic coupling between protists and copepods in arctic marine ecosystems. Mar Ecol Prog Ser 204:65–77

    Article  Google Scholar 

  • Lyck L, Taagholt J (1987) Greenland—its economy and resources. Arctic 40:50–59

    Article  Google Scholar 

  • Mårtensson PE, Nordoy ES, Blix AS (1994) Digestibility of krill (Euphausia superba and Thysanoessa sp.) in minke whales (Balaenoptera acutorostrata) and crabeater seals (Lobodon carcinophagus). Br J Nutr 72:713–716

    Article  Google Scholar 

  • Mauchline J (1960) The biology of the euphausiid crustacean, Meganyctiphanes norvegica (M. Sars). Proc Roy Soc Edinb B 67, Pt. II(9):141–179

  • Mauchline J (1966) The biology of Thysanoessa raschii (M. Sars), with a comparison of its diet with that of Meganyctiphanes norvegica (M. Sars). In: Barnes H (ed) Some contemporary studies in marine sciences. George Allen and Unwin. Ltd., London, pp 493–510

    Google Scholar 

  • Mauchline J (1980) The biology of Euphausiids. Adv Marine Biol 18:373–623

    Article  Google Scholar 

  • Mauchline J, Fisher LR (1969) The biology of Euphausiids. Adv Marine Biol 7:1–454

    Article  Google Scholar 

  • McClatchie S (1985) Feeding behavior in Meganyctiphanes norvegica (M. Sars) (Crustacea, Euphausiacea). J Exp Marine Biol Ecol 86:271–284

    Article  Google Scholar 

  • McClatchie S (1986) Time-series feeding rates of the euphausiid Thysanoessa raschii in a temporally patchy food environment. Limnol Oceanogr 31:469–477

    Article  Google Scholar 

  • McClatchie S (1988) Functional response of the euphausiid Thysanoessa raschii grazing on small diatoms and toxic dinoflagellates. J Mar Res 46:631–646

    Article  Google Scholar 

  • McClatchie S, Boyd CM (1983) Morphological study of sieve efficiencies and mandibular surfaces in the Antarctic krill Euphausia superba. Can J Fish Aquat Sci 40:955–967

    Article  Google Scholar 

  • McQuarrie ADR, Tsai C-L (1998) Regression and time series model selection. World Scientific, Singapore

    Book  Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579

    Article  CAS  Google Scholar 

  • Menden-Deuer S, Lessard EJ, Satterberg J (2001) Effect of preservation on dinoflagellate and diatom cell volume and consequences for carbon biomass predictions. Mar Ecol Prog Ser 222:41–50

    Article  Google Scholar 

  • Merkel FR, Mosbech A, Boertmann D, Grøndahl L (2002) Winter seabird distribution and abundance off south-western Greenland, 1999. Polar Res 21:17–36

    Article  Google Scholar 

  • Meyer MA, El-Sayed SZ (1983) Grazing of Euphausia superba Dana on natural phytoplankton populations. Polar Biol 1:193–197

    Article  Google Scholar 

  • Meyer B, Auerswald L, Siegel V, Spahic S, Pape C, Fach BA, Teschke M, Lopata AL, Fuentes V (2010) Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea. Mar Ecol Prog Ser 398:1–18

    Article  CAS  Google Scholar 

  • Møller EF, Nielsen TG, Richardson K (2006) The zooplankton community in the Greenland Sea: Composition and role in carbon turnover. Deep Sea Res I 52:76–93

    Article  Google Scholar 

  • Morris DJ (1984) Filtration rates of Euphausia superba Dana: under- or overestimates? J Crustac Biol 4:185–197

    Article  Google Scholar 

  • Ohman MD (1984) Omnivory by Euphausia superba: the role of copepod prey. Mar Ecol Prog Ser 19:125–131

    Article  Google Scholar 

  • Onsrud MSR, Kaartvedt S, Rostad A, Klevjer TA (2004) Vertical distribution and feeding patterns in fish foraging on the krill Meganyctiphanes norvegica. Ices J Marine Sci 61:1278–1290

    Article  Google Scholar 

  • Parsons TR, LeBrasseur RJ, Fulton JD (1967) Some observations on the dependence of zooplankton grazing on the cell size and concentration of phytoplankton blooms. J Oceanogr Soc Jpn 23:10–17

    Article  Google Scholar 

  • Pearcy WG, Hopkins CCE, Grønvik S, Evans RA (1979) Feeding habits of cod, capelin and herring in Balsfjorden, Northern Norway, July–August 1978: the importance of Euphausiids. Sarsia 64:269–277

    Article  Google Scholar 

  • Perissinotto R, Pakhomov EA, McQuaid CD, Froneman PW (1997) In situ grazing rates and daily ration of Antarctic krill Euphausia superba feeding on phytoplankton at the Antarctic Polar Front and the Marginal Ice Zone. Mar Ecol Prog Ser 160:77–91

    Article  Google Scholar 

  • Perissinotto R, Gurney L, Pakhomov EA (2000) Contribution of heterotrophic material to diet and energy budget of Antarctic krill, Euphausia superba. Mar Biol 136:129–135

    Article  Google Scholar 

  • Price HJ (1989) Swimming behavior of krill in response to algal patches: a mesocosm study. Limnol Oceanogr 34:649–659

    Article  Google Scholar 

  • Price HJ, Boyd KR, Boyd CM (1988) Omnivorous feeding behavior of the Antarctic krill Euphausia superba. Mar Biol 97:67–77

    Article  Google Scholar 

  • Putt M, Stoecker DK (1989) An experimentally determined carbon:volume ratio for marine “oligotrichous” ciliates from estuarine and coatal waters. Limnol Oceanogr 34:1097–1103

    Article  Google Scholar 

  • Ranta E, Hakala I (1978) Respiration of Mysis relicta (Crustacea, Malacostraca). Arch Hydrobiol 83:515–523

    Google Scholar 

  • Reigstad M, Riser CW, Svensen C (2005) Fate of copepod faecal pellets and the role of Oithona spp. Mar Ecol Prog Ser 304:265–270

    Article  Google Scholar 

  • Ross RM (1982) Energetics of Euphausia pacifica. I. Effects of body carbon and nitrogen and temperature on measured and predicted production. Marine Biol 68:1–13

    Article  CAS  Google Scholar 

  • Rysgaard S, Arendt KE, Frederiksen M, Mortensen J, Egevang C, Labansen A, Witting L, Simon M, Pedersen L, Mikkelsen DM (2008) Nuuk basic: the marine basic programme 2005–2006. In: Jensen LM, Rasch M (eds) Nuuk ecological research operations, 1st annual report 2007. Danish Polar Center, Copenhagen

    Google Scholar 

  • Satapoomin S (1999) Carbon content of some common tropical Andaman Sea copepods. J Plankton Res 21:2117–2123

    Article  Google Scholar 

  • Schultz M, Kiørboe T (2009) Active prey selection in two pelagic copepods feeding on potentially toxic and non-toxic dinoflagellates. J Plankton Res 31:553–561

    Article  Google Scholar 

  • Small LF, Hebard JF, McIntire CD (1966) Respiration in Euphausiids. Nature 211:1210–1211

    Article  Google Scholar 

  • Smidt ELB (1979) Annual cycles of primary production and of zooplankton at Southwest greenland. Greenl Biosci 1:3–53

    Google Scholar 

  • Sorensen MC, Hipfner JM, Kyser TK, Norris DR (2010) Pre-breeding diet influences ornament size in the Rhinoceros Auklet Cerorhinca monocerata. Ibis 152:29–37

    Article  Google Scholar 

  • Vismann B, Hagerman L (1996) Recovery from hypoxia with and without sulfide in Saduria entomon: oxygen debt, reduced sulfur and anaerobic metabolites. Mar Ecol Prog Ser 143:131–139

    Article  CAS  Google Scholar 

  • Tang KW, Nielsen TG, Munk P, Mortensen J, Møller EF, Arendt KE, Tönnesson K, Pedersen TJ (under revision) Community structure and trophodynamics of mesozooplankton along a melt water influenced Greenlandic fjord. Mar Ecol Prog Ser

  • Zinabu GM, Bott TL (2000) The effects of formalin and Lugol’s iodine solution on protozoal cell volume. Limnol Ecol Manage Inland Waters 30:59–63

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study (ECOGREEN) was funded by a grant from the Commission for Scientific Research in Greenland (KVUG), the Danish Natural Sciences Research Council, and is a contribution of the Greenland Climate Research Centre. Greenland Institute of Natural Resources is thanked for excellent laboratory facilities and logistical support. Also, we would like to thank Anja Retzel (GINR) for collecting krill biomass data, Prof. Thomas Kiørboe and Dr. Steffen Oppel for statistical advice, and Dr. Kam W. Tang for providing various data on mesozooplankton biomass.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torkel Gissel Nielsen.

Additional information

Communicated by A. Atkinson .

An erratum to this article is available at http://dx.doi.org/10.1007/s00227-014-2487-6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agersted, M.D., Nielsen, T.G., Munk, P. et al. The functional biology and trophic role of krill (Thysanoessa raschii) in a Greenlandic fjord. Mar Biol 158, 1387–1402 (2011). https://doi.org/10.1007/s00227-011-1657-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1657-z

Keywords

Navigation