Skip to main content
Log in

Mating behaviour of Pseudodiaptomus annandalei (Copepoda, Calanoida) at calm and hydrodynamically disturbed waters

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Behavioural observations of male copepods revealed that they commonly follow female footprints to find their mates. Copepods can perceive signals generated by females either hydromechanically or chemically. Signal intensity is affected by hydrodynamic conditions which clear chemical and mechanical cues and modulate copepod’s ability to sense signals of their biotic environment, such as in their search for mates. We studied the patterns and efficiency of the copepod Pseudodiaptomus annandalei to mate in calm and hydrodynamically disturbed waters, in illuminated and dark conditions in experimental containers of different shapes and volumes. Courtship in P. annandalei was a negative function of hydromechanical disturbance, since successful mating events were observed in calm water only. In weakly turbulent conditions (air-bubbling of 100 ml/min), males were not able to pursue females properly; swimming speed decreased about three times in comparison with that in calm water. In calm water conditions, sequential and simultaneous taxis mechanisms were used by P. annandalei males to pursue females. The ability of P. annandalei males to track a three-dimensional trail probably depended on the persistence of fluid-borne signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alcaraz M, Saiz E, Calbet A (2007) Centropages behaviour: swimming and vertical migration. In: Carlotti F, Harris R (eds) The biology of Centropages typicus. Prog Oceanogr 72:121–136

  • Bagøien E, Kiørboe T (2005) Blind dating—mate finding in planktonic copepods. I. Tracking the pheromone trail of Centropages typicus. Mar Ecol Prog Ser 300:105–115

    Article  Google Scholar 

  • Båmstedt U, Gifford DJ, Irigoien X, Atkinson A, Roman M (2000) Feeding. In: Harris R, Wiebe P, Lenz J, Skjøldal HR, Huntley M (eds) ICES zooplankton methodology manual. Academic Press, London, pp 297–399

    Chapter  Google Scholar 

  • Beyrend-Dur D, Kumar R, Rao TR, Souissi S, Cheng SH, Hwang JS (2011) Demographic parameters of adults of Pseudodiaptomus annandalei (Copepoda: Calanoida): temperature-salinity and generation effects. J Exp Mar Biol Ecol (in press)

  • Blades PI (1977) Mating behavior of Centropages typicus (Copepoda: Calanoida). Mar Biol 40:57–64

    Article  Google Scholar 

  • Blades PI, Youngbluth MJ (1979) Mating behavior of Labidocera aestiva (Copepoda: Calanoida). Mar Biol 51:339–355

    Article  Google Scholar 

  • Boxshall GA (1998) Preface. In: Boxshall GA (ed) Mating biology of copepods. Philos Trans R Soc Lond B 353:669–670

  • Bresciani J, Dahms HU (1994) The integumental ultrastructure of Parathalestris harpactoides (G. O. Sars, 1863) (Copepoda, Harpacticoida). Hydrobiologia Suppl 292(293):137–142

    Article  Google Scholar 

  • Buskey EJ (1984) Swimming pattern as an indicator of the roles of copepod sensory systems in the recognition of food. Mar Biol 79:165–175

    Article  Google Scholar 

  • Buskey EJ (1998) Components of mating behavior in planktonic copepods. J Mar Syst 15:13–21

    Article  Google Scholar 

  • Buskey EJ, Hartline DK (2003) High-speed video analysis of the escape responses of the copepod Acartia tonsa to shadows. Biol Bull 204:28–37

    Article  Google Scholar 

  • Checkley DM Jr (1980) The egg production of a marine planktonic copepod in relation to its food supply: laboratory studies. Limnol Oceanogr 25:430–446

    Article  CAS  Google Scholar 

  • Chen QX, Sheng JQ, Lin Q et al (2006) Effect of salinity on reproduction and survival of the copepod Pseudodiaptomus annandalei Sewell, 1919. Aquaculture 258:575–582

    Article  CAS  Google Scholar 

  • Cheng SH, Chen HC, Chen TI (2002) The feasibility on growing copepod, Pseudodiaptomus annandalei by adding artificial fermented liquid in laboratory condition. Annual report, Fisheries Research Institute, COA (in Chinese)

  • Cheng SH, Lee CH, Dahms HU, Hwang JS (2008) Homosexual mating in the planktonic copepod Pseudodiaptomus annandalei (Copepoda: Calanoida). J Crust Biol 28:580–582

    Article  Google Scholar 

  • Costello JH, Strickler JR, Marrasé C, Trager G, Zeller R, Freise AJ (1990) Grazing in the turbulent environment: behavioral response of a calanoid copepod, Centropages hamatus. Proc Natl Acad Sci USA 87:1648–1652

    Article  CAS  Google Scholar 

  • Dahms HU (1992) Metamorphosis between naupliar and copepodid phase in the Harpacticoida (Copepoda). Philos Trans R Soc Lond B 335:221–236

    Article  Google Scholar 

  • Dahms HU (1993) Internal anatomy of Paramphiascella fulvofasciata (Copepoda, Harpacticoida). Can J Zool 71:1242–1250

    Article  Google Scholar 

  • Dahms HU, Hwang JS (2010) Perspectives of underwater optics in biological oceanography and plankton ecology studies. J Mar Sci Technol 18:112–121

    Google Scholar 

  • Dahms HU, Qian PY (2005) Exposure of biofilms to copepods affects the larval settlement of Hydroides elegans (Polychaeta). Mar Ecol Prog Ser 297:203–214

    Article  Google Scholar 

  • Dahms HU, Qian PY (2006) Kin-recognition during intraspecific predation of Harpacticus sp. (Copepoda, Harpacticoida)? Zool Stud 45:395–403

    Google Scholar 

  • Dahms HU, Schminke HK (1993) Mate guarding in Tisbe bulbisetosa (Crustacea, Copepoda). Crustaceana 65:8–12

    Article  Google Scholar 

  • Dahms HU, Harder T, Qian PY (2006a) Selective attraction and reproductive performance of a harpacticoid copepod in a response to biofilms. J Exp Mar Biol Ecol 341:228–238

    Article  Google Scholar 

  • Dahms HU, Li X, Zhang G, Qian PY (2006b) Resting stages of Tortanus forcipatus (Crustacea, Calanoida) in sediments of Victoria Harbor, Hong Kong. Estuar Coast Shelf Sci 67:562–568

    Article  Google Scholar 

  • Doall MH, Colin SP, Strickler JR, Yen J (1998) Locating a mate in 3D: the case of Temora longicornis. Philos Trans R Soc Lond B 353:681–689

    Article  Google Scholar 

  • Doall MH, Wilson SE, Strickler JR, Yen J (2001) The tandem hop mating dance of Acartia tonsa, a planktonic calanoid copepod. Abstract, aquatic science meeting, Albuquerque. Am Soc Limnol Oceanogr, Waco

  • Dur G, Souissi S, Schmitt F, Cheng S-H, Hwang JS (2010) The different aspects in motion of the three reproductive stages of Pseudodiaptomus annandalei (Copepoda, Calanoida). J Plank Res 32:423–440

    Article  Google Scholar 

  • Dusenbery DB (1992) Sensory ecology: how organisms acquire and respond to information. Freeman, New York

    Google Scholar 

  • Engström-Őst J, Őst M, Yli-Renko M (2009) Balancing algal toxicity and turbidity with predation risk in the three-spined stickleback. J Exp Mar Biol Ecol 377:54–59

    Article  Google Scholar 

  • Fields DM, Yen J (2002) Fluid mechanosensory stimulation of behavior from a planktonic marine copepod, Euchaeta rimana Bradford. J Plank Res 24:747–755

    Article  Google Scholar 

  • Folt CL, Burns CW (1999) Biological drivers of plankton patchiness. Trends Ecol Evol 14:300–305

    Article  Google Scholar 

  • Forward RB Jr, Ritschoff D (2000) Alteration of photo responses involved in diel vertical migration of a crab larva by fish mucus and degradation products of mucopolysaccharides. J Exp Mar Biol Ecol 245:277–292

    Article  CAS  Google Scholar 

  • Frost BW (1972) Effects of size and concentration of food particles on the feeding behavior of a marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17:805–815

    Article  Google Scholar 

  • Gerritsen J, Strickler JR (1977) Encounter probabilities and community structure in zooplankton: a mathematical model. J Fish Res Bd Can 34:73–82

    Google Scholar 

  • Griffiths AM, Frost BW (1976) Chemical communication in the marine planktonic copepods Calanus pacificus and Pseudocalanus sp. Crustaceana 30:1–8

    Article  Google Scholar 

  • Huys R, Boxshall GRF (1991) Copepod evolution. The royal society series 159. The Ray Society, London

  • Hwang JS (1991) Behavioral responses and their role in prey/predator interactions of a calanoid copepod, Centropages hamatus under variable hydrodynamic conditions. PhD dissertation, Boston University, Boston, 165 pp

  • Hwang JS, Strickler JR (1994) Effects of periodic turbulent events upon mechanoreception and escape responses of a calanoid copepod, Centropages hamatus. Bull Plankton Soc Jpn 41:117–130

    Google Scholar 

  • Hwang JS, Strickler JR (2001) Can copepods differentiate prey from predator hydromechanically? Zool Stud 40:1–6

    Google Scholar 

  • Hwang JS, Costello JH, Strickler JR (1994) Copepod grazing in a turbulent flow: elevated foraging behavior and habituation of escape responses. J Plank Res 16:421–431

    Article  Google Scholar 

  • Hwang JS, Ho JS, Shih CT (eds) (2004) Contemporary studies of Copepoda. A special issue of proceeding of 9th international conference on Copepoda. Zool Stud 43:165–512

  • Hwang JS, Kumar R, Hsieh CW, Kuo AY, Souissi S, Hsu MH, Wu JT, Liu WC, Wang CF, Chen QC (2010) Patterns of zooplankton distribution along the marine, estuarine and riverine portions of the Danshuei ecosystem in northern Taiwan. Zool Stud 49:335–352

    Google Scholar 

  • Jacobs J (1961) Laboratory cultivation of the marine copepod Pseudodiaptomus coronatus Williams. Limnol Oceanogr 6:443–446

    Article  Google Scholar 

  • Jacoby CA, Youngbluth MJ (1983) Mating behavior in three species of Pseudodiaptomus (Copepoda: Calanoida). Mar Biol 76:77–86

    Article  Google Scholar 

  • Jiang H, Paffenhöfer GA (2008) Hydrodynamic signal perception by the copepod Oithona plumifera. Mar Ecol Prog Ser 373:37–52

    Article  Google Scholar 

  • Katona S (1973) Evidence for sex pheromones in planktonic copepods. Limnol Oceanogr 18:574–583

    Article  Google Scholar 

  • Kiørboe T (2008) Optimal swimming strategies in mate-searching pelagic copepods. Oecologia 155:179–192

    Article  Google Scholar 

  • Kiørboe T, Saiz E, Visser A (1999) Hydrodynamic signal perception in the copepod Acartia tonsa. Mar Ecol Prog Ser 179:97–111

    Article  Google Scholar 

  • Kiørboe T, Bagøien E, Thygesen U (2005) Blind dating—mate finding in planktonic copepods. II. The pheromone cloud of Pseudocalanus elongatus. Mar Ecol Prog Ser 300:117–128

    Article  Google Scholar 

  • Lee C-H, Dahms H-U, Cheng S-H, Souissi S, Schmitt FG, Kumar R, Hwang J-S (2010) Predation on Pseudodiaptomus annandalei (Copepoda: Calanoida) by the grouper fish fry Epinephelus coioides under different hydrodynamic conditions. J Exp Mar Biol Ecol 393:17–22

    Article  Google Scholar 

  • Lewis DM, Bala SI (2006) Plankton predation rates in turbulence a study of the limitations imposed on a predator with non-spherical field of sensory perception. J Theor Biol 242:44–61

    Article  CAS  Google Scholar 

  • Lo WT, Chung CL, Shih CT (2004a) Seasonal distribution of copepods in Tapong Bay, South Western Taiwan. Zool Stud 43:464–474

    Google Scholar 

  • Lo WT, Hwang JS, Chen QC (2004b) Spatial variations of copepods in the surface waters of South Eastern Taiwan Strait. Zool Stud 43:218–228

    Google Scholar 

  • Lonsdale DJ, Frey MA, Snell TW (1998) The role of chemical signals in copepod reproduction. J Mar Syst 15:1–12

    Article  Google Scholar 

  • MacKenzie BR, Kiørboe T (1995) Encounter rates and swimming behaviour of pause travel and cruise larval fish predators in calm and turbulent environments. Limnol Oceanogr 40:1278–1289

    Article  Google Scholar 

  • Maier G, Berger I, Burghard W et al (2000) Is mating of copepods associated with increased risk of predation? J Plank Res 22:1977–1987

    Article  Google Scholar 

  • Marrasé C, Costello JH, Granata T et al (1990) Grazing in turbulent environment: energy dissipation, encounter rates, and efficacy of feeding currents in Centropages hamatus. Proc Natl Acad Sci USA 87:1653–1657

    Article  Google Scholar 

  • Michalec F-G, Souissi S, Dur G, Mahjoub M-S, Schmitt FG, Hwang J-S (2010) Differences in behavioral responses of Eurytemora affinis (Copepoda, Calanoida) reproductive stages to salinity variations. J Plank Res 32:805–813

    Article  Google Scholar 

  • Nihongi A, Lovern SB, Strickler JR (2004) Mate-searching behaviors in the freshwater calanoid copepod Leptodiaptomus ashlandi. J Mar Syst 49:65–74

    Article  Google Scholar 

  • Paffenhöfer GA, Bundy MH, Lewis KD, Metz C (1995) Rates of ingestion and their variability between individual calanoid copepods: direct observations. J Plank Res 17:1573–1585

    Article  Google Scholar 

  • Rothschild BJ, Osborn TR (1988) Small-scale turbulence and plankton contact rates. J Plank Res 10:465–474

    Article  Google Scholar 

  • Saiz E, Alacaraz M (1992) Free-swimming behaviour of Acartia clausi (Copepoda: Calanoida) under turbulent water movement. Mar Ecol Prog Ser 80:229–236

    Article  Google Scholar 

  • Saiz E, Calbet A, Broglio E (2003) Effects of small-scale turbulence on copepods: the case of Oithona davisae. Limnol Oceanogr 48(3):1304–1311

    Article  Google Scholar 

  • Schmitt FG, Seuront L (2008) Intermittent turbulence and copepod dynamics: increase in encounter rates through preferential concentration. J Mar Syst 70:263–272

    Article  Google Scholar 

  • Seuront L, Brewer MC, Strickler JR (2004a) Quantifying zooplankton swimming behavior: the question of scale. In: Seurong L, Strutton PG (eds) Handbook of scaling methods in aquatic ecology: measurement, analysis, simulation. CRC Press, Boca Raton, pp 333–359

    Google Scholar 

  • Seuront L, Yamazaki H, Souissi S (2004b) Hydrodynamic disturbance and zooplankton swimming behavior. Zool Stud 43:376–387

    Google Scholar 

  • Seuront L, Hwang JS, Tseng LC, Schmitt FG, Souissi S, Wong CK (2004c) Individual variability in the swimming behavior of the sub-tropical copepod Oncaea venusta (Copepoda: Poecilostomatoida). Mar Ecol Prog Ser 283:199–217

    Article  Google Scholar 

  • Sheng JQ, Lin Q, Chen QX et al (2006) Effect of food, temperature and light intensity on the feeding behaviour of three-spot juvenile seahorses, Hippocampus trimaculatus Leach. Aquaculture 256:596–607

    Article  Google Scholar 

  • Snell TW, Carmona MJ (1994) Surface glycoproteins in copepods: potential signals for mate recognition. Hydrobiologia 292(293):255–264

    Article  Google Scholar 

  • Snell TW, Morris PD (1993) Sexual communication in copepods and rotifers. Hydrobiologia 255(256):109–116

    Article  Google Scholar 

  • Souissi S, Daly Yahia MN, Hwang JS (eds) (2007) Proceeding of the 9th international conference on copepoda. J Plank Res 29:1–162

  • Strickler JR (1975) Intra- and interspecific information flow among planktonic copepods: receptors. Verh Intern Verein Limnol 19:2951–2958

    Google Scholar 

  • Strickler JR (1998) Observing free-swimming copepods mating. Philos Trans R Soc Lond B 353:671–680

    Article  Google Scholar 

  • Strickler JR, Hwang JS (1999) Matched spatial filters in long working distance microscopy of phase objects. In: Wu JL, Hwang PP, Wong G, Kim H, Cheng PC (eds) Focus on multidimensional microscopy, vol 2. World Scientific Publishing Co., Singapore, pp 217–239

    Google Scholar 

  • Tiselius P, Jonsson PR (1990) Foraging behaviour of six calanoid copepods: observations and hydrodynamic analysis. Mar Ecol Prog Ser 66:23–33

    Article  Google Scholar 

  • Tiselius P, Jonsson PR, Verity PG (1993) A model evaluation of the impact of food patchiness on foraging strategy and predation risk in zooplankton. Bull Mar Sci 53:247–264

    Google Scholar 

  • Titelman J, Varpe O, Eliassen S, Fiksen O (2007) Copepod mating: chance or choice? J Plank Res 29:1023–1030

    Article  Google Scholar 

  • Tsuda A, Miller CB (1998) Mate-finding behaviour in Calanus marshallae Frost. Phil Trans R Soc Lond B 353:713–720

    Article  Google Scholar 

  • Uchima M, Murano M (1988) Mating behavior of the marine copepod Oithona davisae. Mar Biol 99:39–45

    Article  Google Scholar 

  • Uttieri M, Sabia L, Cianelli D, Strickler JR, Zambianchi E (2010) Lagrangian modelling of swimming behaviour and encounter success in co-occurring copepods: Clausocalanus furcatus vs. Oithona plumifera. J Mar Syst 81:112–121

    Article  Google Scholar 

  • van Düren LA, Videler JJ (1996) The trade-off between feeding, mate seeking and predator avoidance in copepods: behavioural responses to chemical cues. J Plank Res 18:805–818

    Article  Google Scholar 

  • van Düren LA, Stamhuis EJ, Videler JJ (1998) Reading the copepod personal ads: increasing encounter probability with hydromechanical signals. Philos Trans R Soc Lond B 353:691–700

    Article  Google Scholar 

  • van Leeuwen HC, Maly EJ (1991) Changes in swimming behavior of male Diaptomus leptopus (Copepoda: Calanoida) in response to gravid females. Limnol Oceanogr 36:1188–1195

    Article  Google Scholar 

  • Wagget RG, Buskey EJ (2007) Copepod escape behaviour in non-turbulent and turbulent hydrodynamic regimes. Mar Ecol Prog Ser 334:193–198

    Article  Google Scholar 

  • Watras CJ (1983) Mate location by diaptomid copepods. J Plank Res 5:417–423

    Article  Google Scholar 

  • Weissburg MJ, Doass MH, Yen J (1998) Following the invisible trail: kinematic analysis of mate tracking in the copepod Temora longicornis. Philos Trans R Soc Lond B 353:701–712

    Article  CAS  Google Scholar 

  • Wu C-H, Dahms H-U, Buskey E-J, Strickler JR, Hwang J-S (2010) Behavioral interactions of Temora turbinata with potential ciliate prey. Zool Stud 49(2):157–168

    Google Scholar 

  • Yamazaki H, Mackas DL, Denman DL (2002) Coupling small-scale physical processes with biology. In: Robinson AR, McCarthy JJ, Rothschild BJ (eds) The sea, vol 12. Wiley, New York, pp 51–112

    Google Scholar 

  • Yen J, Strickler JR (1996) Advertisement and concealment in the plankton: what makes a copepod hydrodynamically conspicuous? Invert Biol 115:191–205

    Article  Google Scholar 

  • Yen J, Weissburg MJ, Doall MH (1998) The fluid physics of signal perception by mate-tracking copepods. Philos Trans R Soc Lond B 353:787–804

    Article  CAS  Google Scholar 

  • Yen J, Rasberry KD, Webster DR (2008) Quantifying copepod kinematics in a laboratory turbulence apparatus. J Mar Syst 69:283–294

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall International, Inc., Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

We are grateful to the National Science Council of Taiwan, ROC (NSC grant Nos. 94-2611-M-019-010, 94-2621-B-019-001, 95-2621-B-019-002 and 96-2621-B-019-001) and the Center of Excellence for Marine Bioenvironment and Biotechnology of the National Taiwan Ocean University for financial support to J.-S. Hwang. This paper is a contribution to a bilateral project between Taiwan and France (Grant NSC 98-2311-B-019-002-MY3). The Acharya Narendra Dev College (University of Delhi) is thanked to sanction a leave to RK. We thank François-Gael Michalec for commenting on the manuscript. This research was partially supported to HUD by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-A001-0057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Shiou Hwang.

Additional information

Communicated by X. Irigoien.

Chien-Huei Lee and Hans-Uwe Dahms contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CH., Dahms, HU., Cheng, SH. et al. Mating behaviour of Pseudodiaptomus annandalei (Copepoda, Calanoida) at calm and hydrodynamically disturbed waters. Mar Biol 158, 1085–1094 (2011). https://doi.org/10.1007/s00227-011-1632-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1632-8

Keywords

Navigation