Skip to main content

Advertisement

Log in

Geographic structure in Alaskan Pacific ocean perch (Sebastes alutus) indicates limited lifetime dispersal

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Prevailing oceanographic processes, pelagic larvae, adult mobility, and large populations of many marine species often leads to the assumption of wide-ranging populations. Applying this assumption to more localized populations can lead to inappropriate conservation measures. The Pacific ocean perch (Sebastes alutus, POP) is economically and ecologically valuable, but little is known about its population structure and life history in Alaskan waters. Fourteen microsatellite loci were used to characterize geographic structure and connectivity of POP collections (1999–2005) sampled along the continental shelf break from Dixon Entrance to the Bering Sea. Despite opportunities for dispersal, there was significant, geographically related genetic structure (F ST = 0.0123, P < 10−5). Adults appear to belong to neighborhoods at geographic scales less than 400 km, and possibly as small as 70 km, which indicates limited dispersal throughout their lives. The population structure observed has a finer geographic scale than current management, which suggests that measures for POP fisheries conservation should be revisited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ainley DG, Sydeman WJ, Parrish RH, Lenarz WH (1993) Oceanic factors influencing distribution of young rockfish (Sebastes) in central California: a predator’s perspective. CalCOFI Report 34:133–139

    Google Scholar 

  • Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152:763–773

    Google Scholar 

  • Belkhir K, Castric V, Bonhomme F (2002) Program Note: IDENTIX, a software to test for relatedness in a population using permutation methods. Mol Ecol Notes 2:611–614

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Catch F (2004) GENETIX 4.04, software under WindowsTM for the genetics of populations. Laboratory Genome, Populations, Interactions CNRS UMR 5000, University of Montpellier II, Montpellier (France)

  • Bentzen P, Taggart CT, Ruzzante DE, Cook D (1996) Microsatellite polymorphism and the population structure of Atlantic cod (Gadus morhua) in the northwest Atlantic. Can J Fish Aquat Sci 53:2706–2721

    Article  Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Bio 74:21–45

    Article  CAS  Google Scholar 

  • Brodeur RD (2001) Habitat-specific distribution of Pacific ocean perch (Sebastes alutus) in Pribilof Canyon, Bering Sea. Cont Shelf Res 21:207–224

    Article  Google Scholar 

  • Buonaccorsi VP, Kimbrell CA, Lynn EA, Vetter RD (2002) Population structure of copper rockfish (Sebastes caurinus) reflects postglacial colonization and contemporary patterns of larval dispersal. Can J Fish Aquat Sci 59:1374–1384

    Article  CAS  Google Scholar 

  • Buonaccorsi VP, Kimbrell C, Lynn E, Vetter RD (2005) Limited realized dispersal and introgressive hybridization influence genetic structure and conservation strategies for brown rockfish, Sebastes auriculatus. Conserv Gent 6:697–713

    Article  Google Scholar 

  • Carlson RH, Haight RE (1976) Juvenile life of Pacific ocean perch, Sebastes alutus, in coastal fiords of southeastern Alaska: Their environment, growth, food habits, and schooling behavior. T Am Fish Soc 105:191–201

    Article  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21:550–570

    Article  Google Scholar 

  • Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) (2001) Dispersal. Oxford, Oxford

    Google Scholar 

  • Corander J, Waldmann P, Sillanpaa MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 166:367–374

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  Google Scholar 

  • Dieringer D, Schlötterer C (2003) Microsatellite analyzer (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • England R, Cornuet J-M, Berthier P, Tallmon DA, Luikart G (2006) Estimating effective population size from linkage disequilibrium: severe bias in small samples. Conserv Genet 7:303–308

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP: Phylogenetic inference package version 3.5c Distributed over the Internet: http://evolution.genetics.washington.edu/phylip.html

  • Gharrett AJ, Matala AP, Peterson EL, Gray AK, Li Z (2007) Distribution and population genetic structure of sibling rougheye rockfish species. In: Heifetz J, Dicosimo J, Gharrett AJ, Love MS, O’Connell VM, Stanley RD (eds) Biology, assessment, and management of North Pacific Rockfishes, 23rd Lowell Wakefield Fisheries Symposium. Alaska Sea Grant College Program, University of Alaska Fairbanks, Anchorage, AK, pp 121–140

    Google Scholar 

  • Gomez-Uchida D, Hoffman EA, Ardren WR, Banks MA (2003) Microsatellite markers for the heavily exploited canary (Sebastes pinniger) and other rockfish species. Mol Ecol Notes 3:387–389

    Article  CAS  Google Scholar 

  • Gunderson DR (1972) Evidence that Pacific Ocean perch (Sebastes alutus) in Queen Charlotte Sound form aggregations that have different biological characteristics. J Fish Res Board Can 27:1061–1070

    Google Scholar 

  • Gunderson DR (1977) Population biology of Pacific ocean perch, Sebastes alutus, stocks in the Washington-Queen Charlotte sound region, and their response to fishing. Fish B-NOAA 75:369–403

    Google Scholar 

  • Hanselman D, Heifetz J, Fujioka JT, Ianelli JN (2005) Gulf of Alaska Pacific ocean perch. In: Stock assessment and fishery evaluation report for the Groundfish resources of the Gulf of Alaska as projected for 2006. North Pacific Fishery Management Council, 605 W 4th Ave, Suite 306 Anchorage, AK 99501

  • Hastings A (1993) Complex interactions between dispersal and dynamics: lessons from coupled logistic equations. Ecology 74:1362–1372

    Article  Google Scholar 

  • Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9:333–362

    Google Scholar 

  • Hinckley S, Hermann AJ, Mier KL, Megrey BA (2001) Importance of spawning location and timing to successful transport to nursery areas: a simulation study of Gulf of Alaska walleye pollock. ICES J Mar Sci 58:1042–1052

    Article  Google Scholar 

  • Ianelli JN, Heifetz J (1995) Decision analysis of alternative harvest policies for the Gulf of Alaska Pacific ocean perch fishery. Fish Res 24:345–349

    Article  Google Scholar 

  • Ito D (1986) Comparing abundance and productivity estimates of Pacific ocean perch in waters off the United States. In: Proceeding of international rockfish symposium. Alaska Sea Grant College Pgm, University of Alaska. Anchorage, AK, pp 287–298

  • Johnson SW, Murphy ML, Csepp DJ (2003) Distribution, habitat, and behavior of rockfishes, Sebastes spp., in nearshore waters of southeastern Alaska: observations from a remotely operated vehicle. Environ Biol Fish 66:259–270

    Article  Google Scholar 

  • Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv Genet 7:295–302

    Article  Google Scholar 

  • Li G, Hedgecock D (1998) Genetic heterogeneity, detected by PCR SSCP, among samples of larval Pacific oysters (Crassostrea gigas) supports the hypothesis of large variance in reproductive success. Can J Fish Aquat Sci 55:1025–1033

    Article  CAS  Google Scholar 

  • Love MS, Yoklavich M, Thorsteinson LK (eds) (2002) The Rockfishes of the Northeast Pacific. University of California Press, Berkeley, CA

    Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051

    Article  Google Scholar 

  • Lunsford C (1999) Distribution patterns and reproductive aspects of Pacific ocean perch (Sebastes alutus) in the Gulf of Alaska. Masters thesis, University of Alaska Fairbanks, Juneau Center, School of Fisheries and Ocean Sciences

  • Lunsford C, Haldorson L, Fujioka JT, Quinn TJI (2001) Distribution patterns and survey design considerations of Pacific ocean perch (Sebastes alutus) in the Gulf of Alaska. In: Kruse GH, Bez N, Booth A et al (eds) 17th Lowell Wakefield fisheries symposium: spatial processes and management of marine populations. Alaska Sea Grant College Program, University of Alaska, Anchorage, AK, pp 281–302

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  Google Scholar 

  • Matala AP, Gray AK, Heifetz J, Gharrett AJ (2004) Population structure of Alaskan shortraker rockfish, Sebastes borealis, inferred from microsatellite variation. Environ Biol Fish 69:201–210

    Article  Google Scholar 

  • Miller KM, Schultze AD, Withler RE (2000) Characterization of microsatellite loci in Sebastes alutus and their conservation in congeneric rockfish species. Mol Ecol 9:240–242

    Article  CAS  Google Scholar 

  • Mitamura H, Arai N, Sakamoto W et al (2002) Evidence of homing of black rockfish Sebastes inermis using biotelemetry. Fisheries Sci 68:1189–1196

    Article  CAS  Google Scholar 

  • Moser GH, Boehlert GW (1991) Ecology of pelagic larvae and juveniles of the genus Sebastes. Environ Biol Fish 30:203–224

    Article  Google Scholar 

  • Mueter FJ, Norcross BL (2002) Spatial and temporal patterns in the demersal fish community on the shelf and upper slope regions of the Gulf of Alaska. Fish B-NOAA 100:559–581

    Google Scholar 

  • Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:54–57

    Article  Google Scholar 

  • Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:S146–S158

    Article  Google Scholar 

  • Parker SJ, Berkeley SA, Golden JT et al (2000) Management of Pacific Rockfish. Fisheries 25:22–29

    Article  Google Scholar 

  • Pella J, Masuda M (2006) The Gibbs and split-merge sampler for population mixture analysis from genetic data with incomplete baselines. Can J Fish Aquat Sci 63:576–596

    Article  Google Scholar 

  • Piatt JF, Springer AM (2007) Marine ecoregions of Alaska. In: Spies R (ed) Long-term ecological change in the Northern Gulf of Alaska. Elsevier, Amsterdam, pp 522–526

    Google Scholar 

  • Piry S, Alapetite A, Cornuet JM et al (2004) GENECLASS2: a software for genetics assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201

    Article  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Ritland KM (2005) Multilocus estimation of pairwise relatedness with dominant markers. Mol Ecol 14:3157–3165

    Article  CAS  Google Scholar 

  • Rocha-Olivares A, Vetter RD (1999) Effects of oceanographic circulation on the gene flow, genetic structure, and phylogeography of the rosethorn rockfish (Sebastes Helvomaculatus). Can J Fish Aquat Sci 56:803–813

    Article  Google Scholar 

  • Roques S, Sevigny JM, Bernatchez L (2002) Genetic structure of deep-water redfish, Sebaster mentella, population across the North Atlantic. Mar Biol 140:297–307

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  Google Scholar 

  • Rousset F (1999) Genetic differentiation within and between two habitats. Genetics 151:397–407

    CAS  Google Scholar 

  • Rousset F (2001) Genetic approaches to the estimation of dispersal rates. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, New York, pp 18–28

    Google Scholar 

  • Saillant E, Gold JR (2006) Population structure and variance effective size of red snapper (Lutjanus campechanus) in the Northern Gulf of Mexico. Fish B-NOAA 104:136–148

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Scott B (1995) Oceanographic features that define the habitat of Pacific ocean perch, Sebastes alutus. Fish Oceanogr 4:147–157

    Article  Google Scholar 

  • Seeb LW, Gunderson DR (1988) Genetic variation and population structure of Pacific ocean perch (Sebastes alutus). Can J Fish Aquat Sci 45:78–88

    Google Scholar 

  • Sekino M, Takagi N, Hara M, Takahashi H (2000) Microsatellites in rockfish Sebastes thompsoni (Scorpaenidae). Mol Ecol Primer Notes 9:634–636

    CAS  Google Scholar 

  • Selkoe KA, Henzler CM, Gaines SD (2008) Seascape genetics and the spatial ecology of marine populations. Fish Fish 9:363–377

    Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analysis. Can J Zool 69:82–90

    Article  CAS  Google Scholar 

  • Stabeno PJ, Bond NA, Hermann AJ et al (2004) Meteorology and oceanography of the Northern Gulf of Alaska. Cont Shelf Res 24:859–897

    Article  Google Scholar 

  • Stepien CA (1999) Phylogeographical structure of the Dover sole Microstomus pacificus: the larval retention hypothesis and genetic divergence along the deep continental slope of the northeastern Pacific Ocean. Mol Ecol 8:923–939

    Article  CAS  Google Scholar 

  • Valdes AM, Slatkin M, Freimer NB (1993) Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133:737–749

    CAS  Google Scholar 

  • Wang J (2002) An estimator for pairwise relatedness using molecular markers. Genetics 160:1203–1215

    CAS  Google Scholar 

  • Waples RS (1987) A multi-species approach to the analysis of gene flow in marine shore fishes. Evolution 41:385–400

    Article  Google Scholar 

  • Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450

    Article  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size base on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184

    Article  Google Scholar 

  • Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439

    Article  CAS  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Notes 8:753–756

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Westerman ME, Buonaccorsi VP, Stannard JA et al (2005) Cloning and characterization of novel microsatellite DNA markers for the grass rockfish, Sebastes rastrelligeri, and cross-species amplification in 10 related Sebastes spp. Mol Ecol Notes 5:74–76

    Article  CAS  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: F ST = 1/(4Nm + 1). Heredity 82:117–125

    Article  Google Scholar 

  • Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1:80–83

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    Google Scholar 

  • Wimberger P, Burr J, Gray A, Lopez A, Bentzen P (1999) Isolation and characterization of twelve microsatellite loci for rockfish (Sebastes). Marine Biotechnol 1:311–315

    Article  CAS  Google Scholar 

  • Withler RE, Beacham TD, Schultze AD, Richards LJ, Miller KM (2001) Co-existing populations of Pacific ocean perch, Sebastes alutus, in Queen Charlotte Sound, British Columbia. Mar Biol 139:1–12

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 31:114–138

    Google Scholar 

  • Wright S (1956) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations, vol 2. The theory of gene frequencies. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgments

We thank R. Waples and L. Hauser for their helpful comments and review. We thank N. Hillgruber for serving on the graduate committee and for her helpful comments. We thank Alaska Fisheries Science Center, NOAA Fisheries personnel who took tissue samples for this study during trawl surveys. This research was supported by: Alaska Sea Grant College Program, Cooperative Institute for Artic Research (CIFAR), NOAA Fisheries-Auke Bay Laboratories, Rasmuson Fisheries Research Center, and the Pollock Conservation Cooperative Research Center (PCCRC), School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, AK. This work represents, in part, the master’s work of K. Palof at the University of Alaska Fairbanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katie J. Palof.

Additional information

Communicated by T. Reusch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 112 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palof, K.J., Heifetz, J. & Gharrett, A.J. Geographic structure in Alaskan Pacific ocean perch (Sebastes alutus) indicates limited lifetime dispersal. Mar Biol 158, 779–792 (2011). https://doi.org/10.1007/s00227-010-1606-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1606-2

Keywords

Navigation