Skip to main content
Log in

Modification of light utilization for skeletal growth by water flow in the scleractinian coral Galaxea fascicularis

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In this study, we tested the hypothesis that the importance of water flow for skeletal growth (rate) becomes higher with increasing irradiance levels (i.e. a synergistic effect) and that such effect is mediated by a water flow modulated effect on net photosynthesis. Four series of nine nubbins of G. fascicularis were grown at either high (600 μE m−2 s−1) or intermediate (300 μE m−2 s−1) irradiance in combination with either high (15–25 cm s−1) or low (5–10 cm s−1) flow. Growth was measured as buoyant weight and surface area. Photosynthetic rates were measured at each coral’s specific experimental irradiance and flow speed. Additionally, the instantaneous effect of water flow on net photosynthetic rate was determined in short-term incubations in a respirometric flowcell. A significant interaction was found between irradiance and water flow for the increase in buoyant weight, the increase in surface area, and specific skeletal growth rate, indicating that flow velocity becomes more important for coral growth with increasing irradiance levels. Enhancement of coral growth with increasing water flow can be explained by increased net photosynthetic rates. Additionally, the need for costly photo-protective mechanisms at low flow regimes could explain the differences in growth with flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426

    CAS  Google Scholar 

  • Allemand D, Ferrier-Pagès C, Furla P, Houlbrèque F, Puverel S, Reynaud S, Tambutté E, Tambutté S, Zoccola D (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. C R Palevol 3:453–467

    Article  Google Scholar 

  • Anthony KRN, Connolly SR, Willis BL (2002) Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol Oceanogr 47:1417–1429

    Article  Google Scholar 

  • Asada K (1999) The water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Google Scholar 

  • Atkinson MJ, Bilger RW (1992) Effects of water velocity on phosphate uptake in coral reef-flat communities. Limnol Oceanogr 37:273–279

    Article  CAS  Google Scholar 

  • Badger MR, von Caemmerer S, Ruuska S, Nakano H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Philos Trans R Soc Lond B 355:1433–1445

    Article  CAS  Google Scholar 

  • Dunne RP (2010) Synergy or antagonism–interactions between stressors on coral reefs. Coral Reefs 29:145–152

    Article  Google Scholar 

  • Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP (2003) Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–240

    Article  Google Scholar 

  • Finelli CM, Helmuth BST, Pentcheff ND, Wethey DS (2006) Water flow influences oxygen transport and photosynthetic efficiency in corals. Coral Reefs 25:47–57

    Article  Google Scholar 

  • Finelli CM, Helmuth BS, Pentcheff ND, Wethey DS (2007) Intracolony variability in photosynthesis by corals is affected by water flow: role of oxygen flux. Mar Ecol Prog Ser 349:103–110

    Article  Google Scholar 

  • Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457

    CAS  Google Scholar 

  • Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interaction and control by carbonate chemistry. Am Zool 39:160–183

    CAS  Google Scholar 

  • Grande KD, Bender ML, Irwin B, Platt T (1991) A comparison of net and gross rates of oxygen production as a function of light intensity in some natural plankton populations and in a Synechococcus culture. J Plankton Res 13:1–16

    Google Scholar 

  • Hoogenboom MO, Connolly SR, Anthony KRN (2009) Effects of photoacclimation on the light niche of corals: a process-based approach. Mar Biol 156:2493–2503

    Article  Google Scholar 

  • Jokiel PL (1978) Effects of water motion on reef corals. J Exp Mar Biol Ecol 35:87–97

    Article  Google Scholar 

  • Kaandorp JA, Sloot PMA, Merks RMH, Bak RPM, Vermeij MJA, Maier C (2005) Morphogenesis of the branching reef coral Madracis mirabilis. Proc R Soc B 272:127–133

    Article  Google Scholar 

  • Leggat W, Badger MR, Yellowlees D (1999) Evidence for an inorganic carbon-concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp. Plant Physiol 121:1247–1255

    Google Scholar 

  • Lesser MP (1996) Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr 41:271–283

    Article  CAS  Google Scholar 

  • Lesser MP, Weis VM, Patterson MR, Jokiel PL (1994) Effects of morphology and water motion on carbon delivery and productivity in the reef coral, Pocillopora damicornis (Linnaeus): diffusion barriers, inorganic carbon limitation, and biochemical plasticity. J Exp Mar Biol Ecol 178:153–179

    Article  CAS  Google Scholar 

  • Lewitus AJ, Kana TM (1995) Light respiration in six estuarine phytoplankton species: contrasts under photoautotrophic and mixotrophic growth conditions. J Phycol 31:754–761

    Article  Google Scholar 

  • Marubini F, Barnett H, Langdon C, Atkinson MJ (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Mar Ecol Prog Ser 220:153–162

    Article  CAS  Google Scholar 

  • Mass T, Genin A, Shavit U, Grinstein M, Tchernov (2010) Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. PNAS 107:2527–2531

    Article  CAS  Google Scholar 

  • Montebon ARF, Yap HT (1997) Metabolic responses of the scleractinian coral Porites cylindrica Dana to water motion. II. Growth studies. In: Lessios HA, Macintyre IG (eds) Proceedings of the 8th international coral reef symposium Vol 2. Smithsonian Tropical Research Institute, Panama, pp 1065–1070

  • Nakamura T, Van Woesik R (2001) Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. Mar Ecol Prog Ser 212:301–304

    Article  Google Scholar 

  • Nakamura T, van Woesik R, Yamasaki H (2005) Photoinhibition of photosynthesis is reduced by water flow in the reef-building coral Acropora digitifera. Mar Ecol Prog Ser 301:109–118

    Article  Google Scholar 

  • Reynaud S, Ferrier-Pagès C, Boisson F, Allemand D, Fairbanks RG (2004) Effect of light and temperature on calcification and strontium uptake in the scleractinian coral Acropora verweyi. Mar Ecol Prog Ser 279:105–112

    Article  CAS  Google Scholar 

  • Reynaud-Vaganay S, Juillet-Leclerc A, Jaubert J, Gattuso JP (2001) Effect of light on skeletal δ13C and δ18O, and interaction with photosynthesis, respiration and calcification in two zooxanthellate scleractinian corals. Palaeogeogr Palaeoclimateol Palaeoecol 175:393–404

    Article  Google Scholar 

  • Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–202

    Article  Google Scholar 

  • Schutter M, Van Velthoven B, Janse M, Osinga R, Janssen M, Wijffels R, Verreth J (2008) The effect of irradiance on long-term skeletal growth and net photosynthesis in Galaxea fascicularis under four light conditions. J Exp Mar Biol Ecol 67:75–80

    Article  Google Scholar 

  • Schutter M, Crocker J, Paijmans A, Janse M, Osinga R, Verreth J, Wijffels RH (2010) The effect of different flow regimes on the growth and metabolic rates of the scleractinian coral Galaxea fascicularis. Coral Reefs 29:737–748

    Google Scholar 

  • Sebens KP, Witting J, Helmuth B (1997) Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelotti). J Exp Mar Biol Ecol 211:1–28

    Article  Google Scholar 

  • Sebens KP, Helmuth B, Carrington E, Agius B (2003) Effects of water flow on growth and energetics of the scleractinian coral Agaricia tenuifolia in Belize. Coral Reefs 22:35–47

    Google Scholar 

  • Shick JM, Dunlap WC (2002) Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol 64:223–262

    Google Scholar 

  • Smith LW, Birkeland C (2007) Effects of intermittent flow and irradiance level on back reef Porites corals at elevated seawater temperatures. J Exp Mar Biol Ecol 341:282–294

    Article  Google Scholar 

  • Titlyanov EA, Titlyanova TV (2002) Reef-building corals—symbiotic autotrophic organisms: 2. pathways and mechanisms of adaptation to light. Russ J Mar Biol 28:S16–S31

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is part of the European CORALZOO project that aims at improving coral husbandry techniques for sustainable coral breeding in zoo’s and public aquaria. In this project, scientists and aquarists collaborate to provide a scientific basis for coral husbandry techniques. The experiment described in this paper was aimed to determine the effect of interaction between light and water flow on growth of scleractinian corals. This work was funded by the European Commission (Project CORALZOO-012547). We thank Eric Karruppannan, Evert Janssen and VINK kunststoffen B.V. for helping us with the design and construction of the respirometric flowcell. Additionally, we like to thank Imke Crucq for performing the additional measurements to determine the instantaneous effect of water flow on net photosynthetic rate. All procedures described herein comply with current laws of the Netherlands. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Osinga.

Additional information

Communicated by R. H. Richmond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schutter, M., Kranenbarg, S., Wijffels, R.H. et al. Modification of light utilization for skeletal growth by water flow in the scleractinian coral Galaxea fascicularis . Mar Biol 158, 769–777 (2011). https://doi.org/10.1007/s00227-010-1605-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1605-3

Keywords

Navigation