Skip to main content

Advertisement

Log in

Nutritional exchange in a tropical tripartite symbiosis: direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The relationship between anemones and anemonefishes is an oft-cited and endearing example of a mutualistic symbiosis. Current research on mutualistic symbioses suggests these relationships are more commonplace and have greater importance at the ecosystem level on nutrient dynamics and evolutionary processes than previously thought. Using stable isotopes 15N and 13C, both field and laboratory experiments were designed to investigate whether nutrient transfer from two species of resident anemonefishes (Amphiprion perideraion and A. clarkii) to host anemones (Heteractis crispa) occurs. Mass spectroscopy indicated that both 15N and 13C were significantly elevated in the tissues of anemonefishes and in both host anemone and zooxanthellae fractions. These experiments provide the first direct empirical evidence of nitrogen and carbon transfer from resident anemonefishes to host anemones and endosymbiotic zooxanthellae. Such transfer of elements within this intriguing tripartite association underscores the central role that nutrient dynamics contributes to the evolutionary processes of these marine symbioses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnal C, Côté IM, Morand S (2001) Why clean and be cleaned? The importance of client ectoparasites and mucus in a marine cleaning symbiosis. Behav Ecol Sociobiol 51:1–7. doi:10.1007/s002650100407

    Article  Google Scholar 

  • Arvedlund M, Iwao K, Brolund TM, Takemura A (2006) Juvenile Thalassoma amblycephalum Bleeker (Labridae, Teleostei) dwelling among the tentacles of sea anemones: a cleanerfish with an ususual client? J Exp Mar Biol Ecol 329:161–173. doi:10.1016/j.jembe.2005.08.005

    Article  Google Scholar 

  • Bachar A, Achituv Y, Pasternak Z, Dubinsky Z (2007) Autotrophy versus heterotrophy: the origin of carbon determines its fate in a symbiotic sea anemone. J Exp Mar Biol Ecol 349:295–298. doi:10.1016/j.jembe.2007.05.030

    Article  CAS  Google Scholar 

  • Belda CA, Lucas JS, Yellowlees D (1993) Nutrient limitation in the giant clam-zooxanthellae symbiosis: effects of nutrient supplements on growth of the symbiotic partners. Mar Biol 117:655–664. doi:10.1007/BF00349778

    Article  Google Scholar 

  • Biel KY, Gates RD, Muscatine L (2007) Effects of free amino acids on the photosynthetic carbon metabolism of symbiotic dinoflagellates. Russian J Plant Physiol 54:171–183. doi:10.1134/S1021443707020033

    Article  CAS  Google Scholar 

  • Brooks WR, Mariscal RN (1984) The acclimation of anemone fishes to sea anemones: protection by changes in the fish’s mucous coat. J Exp Mar Biol Ecol 80:277–285. doi:10.1016/0022-0981(84)90155-2

    Article  Google Scholar 

  • Buston PM (2003) Mortality is associated with social rank in the clown anemonefish (Amphiprion percula). Mar Biol 143:811–815. doi:10.1007/s00227-003-1106-8

    Article  Google Scholar 

  • Cleveland A, Montgomery WL (2003) Gut characteristics and assimilation efficiencies in two species of herbivorous damselfishes (Pomacentridae: Stegastes dorsopunicans and S. planifrons). Mar Biol 142:35–44. doi:10.1007/s00227-002-0916-4

    CAS  Google Scholar 

  • Cleveland A, Jackson HR, Verde EA (2006) Behavioral comparisons of two sympatric clownfish species (Amphiprion clarkia and A. perideraion) as symbionts of the anemone Heteractis crispa. Ecol Evol Ethol Fish Symp, Soka University, Aliso Viejo

    Google Scholar 

  • Cocheret de la Morinière E, Pollux BJA, Nagelkerken I, Hemminga MA, Huiskes AHL, van der Velde G (2003) Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: stable isotopes and gut-content analysis. Mar Ecol Prog Ser 246:279–289. doi:10.3354/meps246279

    Article  Google Scholar 

  • D’Elia CF, Webb KL (1977) The dissolved nitrogen flux of reef corals. In: Proceedings of 3rd International Coral Reef Symposium, Miami

  • D’Elia CF, Domoster SL, Webb KL (1983) Nutrient uptake kinetics of freshly isolated zooxanthellae. Mar Biol 75:157–167. doi:10.1007/BF00405998

    Article  Google Scholar 

  • Davies PS (1992) Endosymbiosis in marine cnidarians. In: John DM, Hawkins SJ, Prince JH (eds) Plant-animal interactions in the marine benthos. Clarendon Press, Oxford, pp 511–540

    Google Scholar 

  • Davy SK, Trautman DA, Borowitzka MA, Hinde R (2002) Ammonium excretion by a symbiotic sponge supplies the nitrogen requirements of its rhodophyte partner. J Exp Biol 205:3505–3511

    CAS  Google Scholar 

  • DeFreese DE, Clark KB (1991) Transepidermal uptake of dissolved free amino acids from seawater by three ascoglossan opisthobranchs. J Molluscan Stud 57:65–74. doi:10.1093/mollus/57.Supplement_Part_4.65

    Google Scholar 

  • Depczynski M, Fulton CJ, Marnane MJ, Bellwood DR (2007) Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153:111–120. doi:10.1007/s00442-007-0714-2

    Article  Google Scholar 

  • Fautin DG (1991) The anemonefish symbiosis: what is known and what is not. Symbiosis 10:23–46

    Google Scholar 

  • Fautin DG, Allen GR (1992) Field guide to anemonefishes and their host sea anemones. Western Australia Museum, Perth

    Google Scholar 

  • Fautin DG, Guo C-C, Hwang J-S (1995) Costs and benefits of the symbiosis between the anemoneshrimp Periclimenes brevicarpalis and its host Entacmaea quadricolor. Mar Ecol Prog Ser 129:77–84. doi:10.3354/meps129077

    Article  Google Scholar 

  • Ferguson JC (1982) A comparative study of the net metabolic benefits derived from the uptake and release of free amino acids by marine invertebrates. Biol Bull 162:1–17

    Article  CAS  Google Scholar 

  • Fitt WK, Cook CB (2001) The effects of feeding or addition of dissolved inorganic nutrients in maintaining the symbiosis between dinoflagellates and a tropical marine cnidarians. Mar Biol 139:507–517. doi:10.1007/s002270100598

    Article  Google Scholar 

  • Fricke HW (1979) Mating system, resource defense and sex change in the anemonefish, Amphiprion akallopisos. Z Tierpsychol 50:313–326

    Article  Google Scholar 

  • Furla P, Allemand D, Schick JM, Ferrier-Pages C, Richier S, Plantivaux A, Merle P, Tambutte S (2005) The symbiotic anthozoan: a physiological chimera between alga and animal. Integr Comp Biol 45:595–604. doi:10.1093/icb/45.4.595

    Article  CAS  Google Scholar 

  • Gerking SD (1994) Feeding ecology of fish. Academic Press, San Diego

    Google Scholar 

  • Godinot C, Chadwick NE (2009) Phosphate excretion by anemonefish and uptake by giant sea anemones: demand outstrips supply. Bull Mar Sci 85:1–9

    Google Scholar 

  • Godwin J, Fautin DG (1992) Defense of host actinians by anemonefishes. Copeia 1992(3):902–908

    Article  Google Scholar 

  • Goldshmid R, Holzman R, Weihs D, Genin A (2004) Aeration of corals by sleep-swimming fish. Limnol Oceanogr 49:1832–1839

    Article  Google Scholar 

  • Gomme J (1982) Epidermal nutrient absorption in marine invertebrates: a comparative analysis. Amer Zool 22:691–708. doi:10.1093/icb/22.3.691

    CAS  Google Scholar 

  • Hattori A (2002) Small and large anemonefishes can coexist using the same patchy resources on a coral reef, before habitat destruction. J Anim Ecol 71:824–831. doi:10.1046/j.1365-2656.2002.00649.x

    Article  Google Scholar 

  • Heikoop JM, Risk MJ, Lazier AV, Edinger EN, Jompa J, Limmon GV, Dunn JJ, Browne DR, Schwarcz HP (2000) Nitrogen-15 signals of anthropogenic nutrient loading in reef corals. Mar Poll Bull 40:628–636. doi:10.1016/S0025-326X(00)00006-0

    Article  CAS  Google Scholar 

  • Ho C-T, Kao S-J, Dai C-F, Hsieh H-L, Shiah F-K, Jan K-Q (2007) Dietary separation between two blennies and the Pacific Gregory in northern Taiwan: evidence from stomach content and stable isotope analysis. Mar Biol 151:729–736. doi:10.1007/s00227-006-0517-8

    Article  Google Scholar 

  • Hoegh-Guldberg O, Smith GJ (1989) The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J Exp Mar Biol Ecol 129:279–303. doi:10.1016/0022-0981(89)90109-3

    Article  Google Scholar 

  • Holbrook SJ, Schmitt RJ (2005) Growth, reproduction and survival of a tropical sea anemone (Actinaria): benefits of hosting anemonefish. Coral Reefs 24:67–73. doi:10.1007/s00338-004-0432-8

    Article  Google Scholar 

  • Holbrook SJ, Brooks AJ, Schmitt RJ, Stewart HL (2008) Effects of sheltering fish on growth of their coral hosts. Mar Biol 155:521–530. doi:10.1007/s00227-008-1051-7

    Article  Google Scholar 

  • Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17. doi:10.1111/j.1469-185X.2008.00058.x

    Article  Google Scholar 

  • Klumpp DW, Polunin NVC (1989) Partitioning among grazers of food resources within damselfish territories on a coral reef. J Exp Mar Biol Ecol 125:145–169. doi:10.1016/0022-0981(89)90040-3

    Article  Google Scholar 

  • Liberman T, Genin A, Loya Y (1995) Effects on growth and reproduction of the coral Stylophora pistillata by the mutualistic damselfish Dascyllus marginatus. Mar Biol 121:741–746. doi:10.1007/BF00349310

    Article  Google Scholar 

  • Lipschultz F, Cook CB (2002) Uptake and assimilation of 15N-ammonium by the symbiotic sea anemone Batholomea annulata and Aiptasia pallida: conservation versus recycling of nitrogen. Mar Biol 140:489–502. doi:10.1007/s00227-001-0717-1

    Article  CAS  Google Scholar 

  • Marshal WS, Grosell M (2006) Ion transport, osmoregulation, and acid-base regulation. In: Evans DH, Claiborne JB (eds) The physiology of fishes, 3rd edn. CRC Press, Boca Raton, pp 177–230

    Google Scholar 

  • Meyer JL, Schultz ET (1985) Tissue condition and growth rate of corals associated with schooling fish. Limnol Oceanogr 30:157–166

    Article  Google Scholar 

  • Meyer JL, Schultz ET, Helfman GS (1983) Fish schools: an asset to corals. Science 220:1047–1049. doi:10.1126/science.220.4601.1047

    Article  CAS  Google Scholar 

  • Montgomery WL, Gerking SD (1980) Marine macroalgae as foods for fishes: an evaluation of potential food quality. Environ Biol Fish 5:143–153. doi:10.1007/BF02391621

    Article  Google Scholar 

  • Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Coral reefs. Elsevier, Amsterdam

    Google Scholar 

  • Muscatine L, D’Elia CF (1978) The uptake, retention, and release of ammonium by reef corals. Limnol Oceanogr 23:725–734

    Article  CAS  Google Scholar 

  • Muscatine L, Kaplan IR (1994) Resource partitioning by reef corals as determined from stable isotope composition II. 15N of zooxanthellae and animal tissue versus depth. Pac Sci 48:304–312

    Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals and mutualistic symbiosis adapted to nutrient-poor environment. BioSci 27:454–460

    Article  Google Scholar 

  • Nakagawa H, Asakawa M, Enomoto N (1988) Diversity in the carbohydrate moieties of mucus glycoproteins of various fishes. Nippon Suisan Gakkaishi 54:1653–1658

    CAS  Google Scholar 

  • Pinnegar JK, Polunin NVC (2006) Planktivorous damselfish supports significant nitrogen and phosphorus fluxes to Mediterranean reefs. Mar Biol 148:1089–1099. doi:10.1007/s00227-005-0141-z

    Article  Google Scholar 

  • Polunin NVC (1988) Efficient uptake of algal production by a single resident herbivorous fish on a reef. J Exp Mar Biol Ecol 123:61–76. doi:10.1126/science.220.4601.1047

    Article  Google Scholar 

  • Porat D, Chadwick-Furman NE (2004) Effects of anemonefish on giant sea anemones: expansion behavior, growth, and survival. Hydrobiologica 530–531:513–520. doi:10.1007/978-1-4020-2762-8_58

    Article  Google Scholar 

  • Porat D, Chadwick-Furman NE (2005) Effects of anemonefish on giant sea anemones: ammonium uptake, zooxanthella content and tissue regeneration. Mar Fresh Behav Physiol 38:43–51. doi:10.1080/10236240500057929

    Article  CAS  Google Scholar 

  • Richardson DL, Harrison PL, Harriott VJ (1997) Timing of spawning and fecundity of a tropical and subtropical anemonefish (Pomacentridae: Amphiprion) on a high latitude reef on the east coast of Australia. Mar Ecol Prog Ser 156:175–181

    Article  Google Scholar 

  • Rinkevich B, Wolodarsky Z, Loya Y (1991) Coral-crab association: a compact domain of a multilevel trophic system. Hydrobiologia 216/217:279–284. doi:10.1007/BF00026475

    Google Scholar 

  • Roberts JM, Davies PS, Fixter LM, Preston T (1999) Primary site and initial products of ammonium assimilation in the symbiotic sea anemone Anemonia viridis. Mar Biol 135:223–236. doi:10.1007/s002270050620

    Article  CAS  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284. doi:10.1126/science.1067728

    Article  CAS  Google Scholar 

  • Roopin M, Chadwick NE (2009) Benefits to host sea anemones from ammonia contributions of resident anemonefishes. J Exp Mar Biol Ecol 370:27–34. doi:10.1016/j.jembe.2008.11.006

    Article  CAS  Google Scholar 

  • Roopin M, Henry RP, Chadwick NE (2008) Nutrient transfer in a marine mutualism: patterns of ammonia excretion by anemonefish and uptake by giant sea anemones. Mar Biol 154:547–556. doi:10.1007/s00227-008-0948-5

    Article  CAS  Google Scholar 

  • Schmitt RJ, Holbrook SJ (2003) Mutualism can mediate competition and promote coexistence. Ecol Letters 6:898–902. doi:10.1046/j.1461-0248.2003.00514.x

    Article  Google Scholar 

  • Shuman CS, Hodgson G, Ambrose RF (2005) Population impacts of collecting sea anemones and anemonefish for the marine aquarium trade in the Philippines. Coral Reefs 24:564–573. doi:10.1007/s00338-005-0027-z

    Article  Google Scholar 

  • Stewart HL, Holbrook SJ, Schmitt RJ, Brooks AJ (2006) Symbiotic crabs maintain coral health by clearing sediments. Coral Reefs 25:609–615. doi:10.1007/s00338-006-0132-7

    Article  Google Scholar 

  • Tanaka Y, Miyajima T, Koike I, Hayashibara T, Ogawa H (2006) Translocation and conservation of organic nitrogen within the coral-zooxanthella symbiotic system of Acropora pulchra, as demonstrated by dual isotope-labeling techniques. J Exp Mar Biol Ecol 336:110–119. doi:10.1016/j.jembe.2006.04.011

    Article  CAS  Google Scholar 

  • Tyler WA, Stanton F (1995) Potential influence of food abundance on spawning patterns in a damselfish, Abudefduf abdominalis. Bull Mar Sci 57:610–623

    Google Scholar 

  • Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exper Bot 59:1069–1080. doi:10.1093/jxb/erm328

    Article  CAS  Google Scholar 

  • Walsh PJ, Blackwelder P, Gill KA, Danulat E, Mommsen TP (1991) Carbonate deposits in marine fish intestines: a new source of biomineralization. Limnol Oceangr 36:1227–1232

    Article  CAS  Google Scholar 

  • Wang J-T, Douglas AE (1998) Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis? J Exp Mar Biol Ecol 201:2445–2453

    Google Scholar 

  • Wang J-T, Douglas AE (1999) Essential amino acid synthesis and nitrogen recycling for an alga-invertebrate symbiosis. Mar Biol 135:219–222. doi:10.1007/s002270050619

    Article  CAS  Google Scholar 

  • Wilkerson FP, Trench RK (1986) Uptake of dissolved inorganic nitrogen by the symbiotic clam Tridacna gigas and the coral Acropora sp. Mar Biol 93:237–246. doi:10.1007/BF00508261

    Article  CAS  Google Scholar 

  • Wilson RW, Millero FJ, Taylor JR, Walsh PJ, Christensen V, Jennings S, Grosell M (2009) Contribution of fish to the marine inorganic carbon cycle. Science 323:359–362. doi:10.1126/science.1157972

    Article  CAS  Google Scholar 

  • Yellowlees D, Rees RAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694. doi:10.1111/j.1365-3040.2008.01802.x

    Article  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

We would like to thank D. Forest, H. Jackson, C. Blair, and D. Dallis for field and laboratory assistance. We also thank H. Calumpong and the researchers and staff at Silliman University, Dumaguete, Philippines, for laboratory and logistical assistance. Financial support was provided by Sigma Delta Epsilon Graduate Women in Science (AC), the American Philosophical Society (AC), PADI A.W.A.R.E. (AC, EAV), and Maine Maritime Academy Professional Development Committee (AC, EAV). We thank our three anonymous reviewers whose constructive comments greatly enhanced the merit of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Cleveland.

Additional information

Communicated by D. Goulet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleveland, A., Verde, E.A. & Lee, R.W. Nutritional exchange in a tropical tripartite symbiosis: direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. Mar Biol 158, 589–602 (2011). https://doi.org/10.1007/s00227-010-1583-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1583-5

Keywords

Navigation