Skip to main content
Log in

Biomineralization markers during early shell formation in the European abalone Haliotis tuberculata, Linnaeus

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Larval shell formation was investigated in the European abalone Haliotis tuberculata. Stages of mineralization as well as enzymatic and endocrine biomarkers were monitored throughout larval development, from hatching to post-larval stages. Polarized light microscopy and infrared spectroscopy analyses revealed the presence of crystallized calcium carbonate arranged in aragonite polymorphs from the late trochophore stage. A correlation between the main steps of shell formation and enzymatic activities of alkaline phosphatase and carbonic anhydrase was seen. The variations of these biologic activities were related to the onset of mineralization, the rapid shell growth, and the switch from larval to juvenile shell following metamorphosis. Furthermore, a strong increase in the level of calcitonin gene-related molecules was measured in post-larvae, suggesting that endocrine control takes place after metamorphosis. The changes measured for the three biomineralization markers together with mineralogical analysis allowed us to correlate physiologic mechanisms with early steps of abalone shell formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almeida MJ, Milet C, Peduzzi J, Pereira L, Haigle J, Barthélemy M, Lopez E (2000) Effect of water-soluble matrix fraction extracted from the nacre of Pinctada maxima on the alkaline phosphatase activity of cultured fibroblasts. J Exp Zool Part B Mol Dev Evol 288:327–334. doi:10.1002/1097-010X(20001215)288:4<327::AID-JEZ5>3.0.CO;2-#

    Article  CAS  Google Scholar 

  • Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244. doi:10.1038/298240a0

    Article  CAS  Google Scholar 

  • Auzoux-Bordenave S, Fouchereau-Peron M, Helléouet M-N, Doumenc D (2007) CGRP regulates the activity of mantle cells and hemocytes in abalone primary cell cultures (Haliotis tuberculata). J Shellfish Res 26:887–894. doi:10.2983/0730-8000(2007)26[887:CRTAOM]2.0.CO;2

    Article  Google Scholar 

  • Basuyaux O (1997) Etude et modélisation des paramètres physico-chimiques sur la croissance de l’ormeau (Haliotis tuberculata) en élevage en circuit semi-fermé. Thèse de Doctorat, Spécialité: Sciences, Université de Caen, France

  • Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky GD, Morse DE (1996) Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381:56–58. doi:10.1038/381056a0

    Article  CAS  Google Scholar 

  • Bevelander G (1988) Development. In: Bevelander G (ed) Abalone: gross and fine structure. The Boxwood Press, Pacific Groove, p 2

    Google Scholar 

  • Bevelander G, Benzer P (1948) Calcification in marine molluscs. Biol Bull 94:176–183

    Article  CAS  Google Scholar 

  • Bielefeld U, Becker W (1991) Embryonic development of the shell in Biomphalaria glabrata (Say). Int J Dev Biol 35:121–131

    CAS  Google Scholar 

  • Blasco J, Puppo J, Sarasquete MC (1993) Acid and alkaline phosphatase activities in the clam Ruditapes decussatus. Mar Biol 115:113–118. doi:10.1007/BF00349392

    Article  CAS  Google Scholar 

  • Bourgoin SG, Harbour D, Poubelle PE (1996) Role of protein kinase C alpha, Arf, and cytoplasmic calcium transients in phospholipase D activation by sodium fluoride in osteoblast-like cells. J Bone Miner Res 11:1655–1665. doi:10.1002/jbmr.5650111109

    Article  CAS  Google Scholar 

  • Crofts DR (1937) The development of Haliotis tuberculata, with special reference to organogenesis during torsion. Philos Trans R Soc Lond B Biol Sci 228:219–268. doi:10.1098/rstb.1937.0012

    Article  Google Scholar 

  • Cudennec B, Rousseau M, Lopez E, Fouchereau-Peron M (2006) CGRP stimulates gill carbonic anhydrase activity in molluscs via a common CT/CGRP receptor. Peptides 27:2678–2682. doi:10.1016/j.peptides.2006.05.019

    Article  CAS  Google Scholar 

  • Dauphin Y, Cuif J-P, Mutvei H, Denis A (1989) Mineralogy, chemistry and ultrastructure of the external shell-layer in ten species of Haliotis with reference to Haliotis tuberculata (Mollusca: Archaeogastropoda). Bull Geol Inst Univ Uppsala NS 15:7–38

    Google Scholar 

  • Duvail L, Fouchereau-Peron M (2001) Calcium metabolism related markers during the growth of Haliotis tuberculata. Invertebr Reprod Dev 40:209–216

    CAS  Google Scholar 

  • Duvail L, Lopez E, Fouchereau-Peron M (1997) Characterization of a calcitonin gene related peptide-like molecule in the abalone, Haliotis tuberculata. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 116:155–159. doi:10.1016/S0742-8413(96)00193-4

    Article  CAS  Google Scholar 

  • Duvail L, Lopez E, Fouchereau-Peron M (1999) Characterization of binding sites for calcitonin gene related peptide in abalone gill. Peptides 20:361–366. doi:10.1016/S0196-9781(99)00043-1

    Article  CAS  Google Scholar 

  • Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69. doi:10.1126/science.271.5245.67

    Article  Google Scholar 

  • Fouchereau-Peron M (1993) Characterization of a molecule related to calcitonin gene-related peptide (CGRP) in the scallop, Pecten maximus. Comp Biochem Physiol B Biochem Mol Biol 105:707–711. doi:10.1016/0305-0491(93)90109-I

    Article  Google Scholar 

  • Freeman JA (1960) Influence of carbonic anhydrase inhibitors on shell growth of a fresh-water snail, Physa heterostropha. Biol Bull 118:412–418

    Article  CAS  Google Scholar 

  • Freeman JA, Wilbur KM (1948) Carbonic anhydrase in molluscs. Biol Bull 94:55–59

    Article  CAS  Google Scholar 

  • Fröhlich F, Gendron-Badou A (2002) La spectroscopie infrarouge, un outil polyvalent. In: Miskovsky J-C (ed) Géologie de la Préhistoire. AEEGP, éditeur, Paris, pp 662–677

    Google Scholar 

  • Genge BR, Sauer GR, Wu LNY, McLeane FM, Wuthier RE (1988) Correlation between loss of alkaline phosphatase activity and accumulation of calcium during matrix vesicle-mediated mineralization. J Biol Chem 263:18513–18519

    CAS  Google Scholar 

  • Jablonski B, Lutz RA (1980) Molluscan larval shell morphology, ecological and paleontological applications. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms. Plenum Press, New York, pp 323–377

    Google Scholar 

  • Jackson D, Worheide G, Degnan B (2007) Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evol Biol 7:160. doi:10.1186/1471-2148-7-160

    Article  Google Scholar 

  • Jardillier E, Rousseau M, Gendron-Badou A, Fröhlich F, Smith D, Martin M, Helléouet M-N, Huchette S, Doumenc D, Auzoux-Bordenave S (2008) A morphological and structural study of the larval shell from the abalone Haliotis tuberculata. Mar Biol 154:735–744. doi:10.1007/s00227-008-0966-3

    Article  Google Scholar 

  • Joosse J (1988) The hormones of molluscs. In: Laufer H (ed) Endocrinology of selected invertebrate types. Alan R Liss, New York, pp 89–140

    Google Scholar 

  • Kniprath E (1981) Ontogeny of the molluscan shell field: a review. Zool Scr 10:61–79. doi:10.1111/j.1463-6409.1981.tb00485.x

    Article  Google Scholar 

  • Lau KH, Farley JR, Baylink DJ (1985) Phosphotyrosyl-specific protein phosphatase activity of a bovine skeletal acid phosphatase isoenzyme. Comparison with the phosphotyrosyl protein phosphatase activity of skeletal alkaline phosphatase. J Biol Chem 260:4653–4660

    CAS  Google Scholar 

  • Levi-Kalisman Y, Falini G, Addadi L, Weiner S (2001) Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J Struct Biol 135:8–17. doi:10.1006/jsbi.2001.4372

    Article  CAS  Google Scholar 

  • Lin A, Meyers MA (2005) Growth and structure in abalone shell. Mater Sci Eng A 390:27–41. doi:10.1016/j.msea.2004.06.072

    Article  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New york

    Google Scholar 

  • Marin F, Luquet G (2004) Molluscan shell proteins. CR Palevol 3:469–492. doi:10.1016/j.crpv.2004.07.009

    Article  Google Scholar 

  • Marin F, Luquet G, Marie B, Medakovic D, Gerald PS (2007) Molluscan shell proteins: primary structure, origin, and evolution. Curr Top Dev Biol 80:209–276. doi:10.1016/S0070-2153(07)80006-8

    Article  Google Scholar 

  • Martoja R, Martoja M (1967) Initiation aux techniques de l’histologie animale. Masson et Cie, Paris

    Google Scholar 

  • Marxen JC, Witten PE, Finke D, Reelsen O, Rezgaoui M, Becker W (2003) A light- and electron-microscopic study of enzymes in the embryonic shell-forming tissue of the freshwater snail, Biomphalaria glabrata. Invertebr Biol 122:313–325. doi:10.1111/j.1744-7410.2003.tb00096.x

    Article  Google Scholar 

  • Medakovic D (2000) Carbonic anhydrase activity and biomineralization process in embryos, larvae and adult blue mussels Mytilus edulis L. Helgol Mar Res 54:1–6. doi:10.1007/s101520050030

    Article  Google Scholar 

  • Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci USA 93:9657–9660. doi:10.1073/pnas.93.18.9657

    Article  CAS  Google Scholar 

  • Miyamoto H, Yano M, Miyashita T (2003) Similarities in the structure of nacrein, the shell-matrix protein, in a bivalve and a gastropod. J Molluscan Stud 69:87–89

    Article  Google Scholar 

  • Mutvei H, Dauphin Y, Cuif J-P (1985) Observations sur l’organisation de la couche externe du test des Haliotis (Gastropoda): un cas exceptionnel de la variabilité minéralogique et microstructurale. Bull Mus natn His nat Paris, 4e ser, 7: 73–91

    Google Scholar 

  • Page LR (1997) Ontogenetic torsion and protoconch form in the archaeogastropod Haliotis kamtschatkana: evolutionary implications. Acta Zool 78:227–245. doi:10.1111/j.1463-6395.1997.tb01009.x

    Article  Google Scholar 

  • Pichard C, Fröhlich F (1986) Analyses infrarouges quantitatives des sédiments. Exemple du dosage du quartz et de la calcite. Rev Inst Fr Pétrol 41:809–819

    CAS  Google Scholar 

  • Rousseau M, Plouguerne E, Wan G, Wan R, Lopez E, Fouchereau-Peron M (2003) Biomineralisation markers during a phase of active growth in Pinctada margaritifera. Comp Biochem Physiol A Mol Integr Physiol 135:271–278. doi:10.1016/S1095-6433(03)00070-9

    CAS  Google Scholar 

  • Timmermans LPM (1969) Studies on shell formation in molluscs. Neth J Zool 19:417–523

    CAS  Google Scholar 

  • Tippins JR, Morris HR, Panico M, Etienne T, Bevis P, Girgis S, MacIntyre I, Azria M, Attinger M (1984) The myotropic and plasma-calcium modulating effects of calcitonin gene-related peptide (CGRP). Neuropeptides 4:425–434. doi:10.1016/0143-4179(84)90118-5

    Article  CAS  Google Scholar 

  • Tsujii T (1976) An electron microscopic study of the mantle cells of Anodonta sp. during shell regeneration. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrates and plants. University of South Carolina Press, Columbia, pp 339–353

    Google Scholar 

  • Vignery A, McCarthy TL (1996) The neuropeptide calcitonin gene-related peptide stimulates insulin-like growth factor I production by primary fetal rat osteoblasts. Bone 18:331–335

    Article  CAS  Google Scholar 

  • Vitale AM, Monserrat JM, Castilho P, Rodriguez EM (1999) Inhibitory effects of cadmium on carbonic anhydrase activity and ionic regulation of the estuarine crab Chasmagnathus granulata (Decapoda, Grapsidae). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 122:121–129. doi:10.1016/S0742-8413(98)10094-4

    Article  CAS  Google Scholar 

  • Watabe N (1988) Shell structure. In: The Mollusca, vol 11. Academic Press, New York, pp. 69–104

  • Weiss IM, Marin F (2008) The role of enzymes in biomineralization processes. Met. Ions Life Sci. In: Sigel A, Sigel H, Sigel RKO (eds) “Biomineralization. From Nature to Application” vol 4, Wiley, Chichester, England, pp. 71–126

  • Wilbur KM, Jodrey LH (1956) Studies on shell formation V. The inhibition of shell formation by carbonic anhydrase inhibitors. Biol Bull 108:359–365

    Article  Google Scholar 

  • Wilbur KM, Saleuddin ASM (1983) Shell formation. In: The Mollusca, vol 4. Academic Press, New York, pp 235–285

Download references

Acknowledgments

We thank B. Marie, F. Marin (University of Bourgogne, Dijon, France), C. Milet (Muséum National d’Histoire Naturelle, Paris, France), and J.-Y. Sire (University of Paris 6) for helpful discussions. We also thank S. Thompson (University of Keele, UK) for the English corrections. FTIR analyses were carried out at the Muséum National d’Histoire Naturelle; we thank Pr. F. Fröhlich (MNHN) for help in FTIR spectra interpretation. This work was supported in part by the European Community: The Atlantic Area Programme BIOTECMAR n° 2008-1/032 and by the Programme PluriFormations “Biomineralization”. B. Gaume was financed by a PhD fellowship from the Ministère de l’Enseignement Supérieur et de la Recherche, in France. The experiments complied with the current French laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béatrice Gaume.

Additional information

Communicated by H. O. Pörtner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaume, B., Fouchereau-Peron, M., Badou, A. et al. Biomineralization markers during early shell formation in the European abalone Haliotis tuberculata, Linnaeus. Mar Biol 158, 341–353 (2011). https://doi.org/10.1007/s00227-010-1562-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1562-x

Keywords

Navigation