Skip to main content
Log in

Negative effects of stress-resistant drift algae and high temperature on a small ephemeral seagrass species

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Seagrasses are threatened by multiple anthropogenic stressors, such as accumulating drift algae and increasing temperatures (associated with eutrophication and global warming, respectively). However, few seagrass experiments have examined whether exposure to multiple stressors causes antagonistic, additive, or synergistic effects, and this has limited our ability to predict the future health status of seagrass beds. We conducted a laboratory experiment to test whether abundance of Gracilaria comosa (3 levels; 0, 1.2, and 3.4 kg WW m−2), an algae that is resistant to wide environmental fluctuations (e.g. light, temperature, salinity, and oxygen levels), has negative effects on the small ephemeral seagrass, Halophila ovalis and whether the effects are exacerbated by high temperature (3 levels; 20, 25, and 30°C). We found an additive negative effect of the two stressors when tested simultaneously on 14 seagrass performance measures, with most data variability explained by the drift algae. For the individual plant performance measures (above- and below-ground growth and mortality, leaf area, internode distance, and root length and root volume), we found 5 additive effects, 4 synergistic effects, and 5 effects that were significant only for drift algae. We also documented a significant additive effect of drift algae and temperature on dissolved porewater sulphide (DS). A follow-up correlation analysis between DS and the 14 plant performance measures revealed significant or near-significant linear correlations on 9 of these responses (above- and below-ground growth, leaf area and weight, leaf mortality, and internode distance). In summary, we showed (a) that a stress-resistant drift algae can have strong negative effects on a small ephemeral seagrass, (b) this negative effect can increase both additively and synergistically with increasing temperature depending on performance measure, and (c) the negative effects may be mediated by a build-up of porewater DS. An implication of our findings is that resource managers aiming to preserve healthy seagrass beds in an almost certain future warmer world should increase efforts to keep drift algae populations low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson MJ (2000) NPMANOVA: a FORTRAN computer program for non-parametric multivariate analysis of variance design using permutation tests. Department of Statistics, University of Auckland, 16 pp

  • Astill H, Lavery PS (2001) The dynamics of unattached benthic macroalgal accumulations in the Swan-Canning Estuary. Hydrol Process 15:2387–2399

    Article  Google Scholar 

  • Astill H, Lavery P (2004) Distribution and abundance of benthic macroalgae in the Swan-Canning Estuary, South-Western Australia. J Roy Soc Western Aust 87:9–14

    Google Scholar 

  • Benjamin KJ, Walker DI, McComb AJ, Kuo J (1999) Structural response of marine and estuarine plants of Halophila ovalis (R-Br.) Hook. f. to long-term hyposalinity. Aquat Bot 64:1–17

    Article  CAS  Google Scholar 

  • Berg P, McGlathery KJ (2001) A high-resolution pore water sampler for sandy sediments. Limnol Oceanogr 46:203–210

    Article  CAS  Google Scholar 

  • Biebl R, McRoy CP (1971) Plasmatic resistance and rate of respiration and photosynthesis of Zostera marina at different salinities and temperatures. Mar Biol 8:48–56

    Google Scholar 

  • Bite JS, Campbell SJ, McKenzie LJ, Coles RG (2007) Chlorophyll fluorescence measures of seagrasses Halophila ovalis and Zostera capricorni reveal differences in response to experimental shading. Mar Biol 152:405–414

    Article  CAS  Google Scholar 

  • Borum J, Pedersen O, Greve TM, Frankovich TA, Zieman JC, Fourqurean JW, Madden CJ (2005) The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. J Ecol 93:148–158

    Article  CAS  Google Scholar 

  • Bouma TJ, Nielsen KL, Koutstaal B (2000) Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant Soil 218:185–196

    Article  CAS  Google Scholar 

  • Bulthuis DA (1987) Effects of temperature on photosynthesis and growth of seagrasses. Aquat Bot 27:27–40

    Article  Google Scholar 

  • Calleja ML, Marba N, Duarte CM (2007) The relationship between seagrass (Posidonia oceanica) decline and sulfide porewater concentration in carbonate sediments. Estuar Coast Shelf S 73:583–588

    Article  Google Scholar 

  • Campbell SJ, McKenzie LJ, Kerville SP (2006) Photosynthetic responses of seven tropical seagrasses to elevated seawater temperature. J Exp Mar Biol Ecol 330:455–468

    Article  CAS  Google Scholar 

  • Cecere E, Saracino OD, Fanelli M, Petrocelli A (1992) Presence of a drifting algal bed in the Mar Piccolo basin, Taranto (Ionian Sea, Southern Italy). J Appl Phycol 4:323–327

    Article  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–457

    Article  CAS  Google Scholar 

  • Connell EL, Walker DI (2001) Nutrient cycling associated with the seagrass Halophila ovalis in the Swan-Canning Estuary based on seasonal variations in biomass and tissue nutrients. Hydrol Process 15:2401–2409

    Article  Google Scholar 

  • Connell EL, Colmer TD, Walker DI (1999) Radial oxygen loss from intact roots of Halophila ovalis as a function of distance behind the root tip and shoot illumination. Aquat Bot 63:219–228

    Article  Google Scholar 

  • Cowper SW (1978) The drift algae community of seagrass beds in Redfish Bay, Texas. Contri Mar Sci 21:125–132

    Google Scholar 

  • Crain CM, Kroeker K, Halpern BS (2008) Interactive and cumulative effects of multiple human stressors in marine systems. Ecol Lett 11:1304–1315

    Article  Google Scholar 

  • Cummins SP (2004) Effects of the green macroalgae Enteromorpha intestinalis on macrobenthic and seagrass assemblages in a shallow coastal estuary. Mar Ecol Prog Ser 266:77–87

    Article  Google Scholar 

  • Darling ES, Cote ES (2008) Quantifying the evidence for ecological synergies. Ecol Lett 11:1278–1286

    Article  Google Scholar 

  • Diaz-Almela E, Marba N, Martinez R, Santiago R, Duarte CM (2009) Seasonal dynamics of Posidonia oceanica in Magalluf Bay (Mallorca, Spain): Temperature effects on seagrass mortality. Limnol Oceanogr 54:2170–2182

    Article  Google Scholar 

  • Duarte CM (1999) Seagrass ecology at the turn of the millennium: challenges for the new century. Aquat Bot 65:7–20

    Article  Google Scholar 

  • Fossing H, Jorgensen BB (1989) Measurement of bacterial sulfate reduction in sediments—evaluation of a single-step chromium reduction method. Biogeochemistry 8:205–222

    Article  CAS  Google Scholar 

  • Fox SE, Stieve E, Valiela I, Hauxwell J, McClelland J (2008) Macrophyte abundance in Waquoit Bay: effects of land-derived nitrogen loads on seasonal and multi-year biomass patterns. Estuar Coasts 31:532–541

    Article  Google Scholar 

  • Garcias-Bonet N, Marba N, Holmer M, Duarte CM (2008) Effects of sediment sulfides on seagrass Posidonia oceanica meristematic activity. Mar Ecol Prog Ser 372:1–6

    Article  CAS  Google Scholar 

  • Greve TM, Borum J, Pedersen O (2003) Meristematic oxygen variability in eelgrass (Zostera marina). Limnol Oceanogr 48:210–216

    Article  Google Scholar 

  • Halun Z, Terrados J, Borum J, Kamp-Nielsen L, Duarte CM, Fortes MD (2002) Experimental evaluation of the effects of siltation-derived changes in sediment conditions on the Philippine seagrass Cymodocea rotundata. J Exp Mar Biol Ecol 279:73–87

    Article  Google Scholar 

  • Hancke K, Glud RN (2004) Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities. Aquat Microb Ecol 37:265–281

    Article  Google Scholar 

  • Hauxwell J, Cebrian J, Furlong C, Valiela I (2001) Macroalgal canopies contribute to (Zostera marina) decline in temperate estuarine ecosystems. Ecology 82:1007–1022

    Google Scholar 

  • Hillman K, McComb AJ, Walker DI (1995) The distribution, biomass and primary production of the seagrass Halophila ovalis in the Swan/Canning estuary. Aquat Bot 51:1–54

    Article  Google Scholar 

  • Holmer M, Bondgaard EB (2001) Photosynthetic and growth response of eelgrass to low oxygen and high sulfide concentrations during hypoxic events. Aquat Bot 70:29–38

    Article  CAS  Google Scholar 

  • Holmer M, Laursen L (2002) Effect of shading of Zostera marina (eelgrass) on sulfur cycling in sediments with contrasting organic matter and sulfide pools. J Exp Mar Biol Ecol 270:25–37

    Article  CAS  Google Scholar 

  • Holmer M, Nielsen RM (2007) Effects of filamentous algal mats on sulfide invasion in eelgrass (Zostera marina). J Exp Mar Biol Ecol 353:245–252

    Article  CAS  Google Scholar 

  • Holmer M, Duarte CM, Boschker E, Barrón C (2004) Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquat Microb Ecol 36:227–237

    Google Scholar 

  • Holmer M, Frederiksen MS, Møllegaard H (2005) Sulfur accumulation in eelgrass (Zostera marina) and effect of sulfur on eelgrass growth. Aquat Bot 81:367–379

    Article  CAS  Google Scholar 

  • Holmer M, Pedersen O, Ikejima K (2006) Sulfur cycling and sulfide intrusion in mixed Southeast Asian tropical seagrass meadows. Bot Mar 49:91–102

    Article  CAS  Google Scholar 

  • Huntington B, Boyer KE (2008) Effects of red macroalgal (Gracilariopsis sp.) abundance on eelgrass Zostera marina in Tomales Bay, California, USA. Mar Ecol Prog Ser 367:133–142

    Article  Google Scholar 

  • Irlandi E, Orlando B, Macia S, Biber P, Jones T, Kaufman L, Lirman D, Patterson E (2002) The influence of freshwater runoff on biomass, morphometrics, and production of Thalassia testudinum. Aquat Bot 72:67–78

    Article  Google Scholar 

  • Kilminster KL, Walker DI, Thompson PA, Raven JA (2008) Changes in growth, internode distance and nutrient concentrations of the seagrass Halophila ovalis with exposure to sediment sulphide. Mar Ecol Prog Ser 361:83–91

    Article  Google Scholar 

  • Koch MS, Erskine JM (2001) Sulfide as a phytotoxin to the tropical seagrass Thalassia testudinum: interactions with light, salinity and temperature. J Exp Mar Biol Ecol 266:81–95

    Article  CAS  Google Scholar 

  • Koch MS, Schopmeyer SA, Holmer M, Madden CJ, Kyhn-Hansen C (2007a) Thalassia testudinum response to the interactive stressors hypersalinity, sulfide and hypoxia. Aquat Bot 87:104–110

    Article  CAS  Google Scholar 

  • Koch MS, Schopmeyer S, Kyhn-Hansen C, Madden CJ (2007b) Synergistic effects of high temperature and sulfide on tropical seagrass. J Exp Mar Biol Ecol 341:91–101

    Article  CAS  Google Scholar 

  • Krause-Jensen D, Christensen PB, Rysgaard S (1999) Oxygen and nutrient dynamics within mats of the filamentous macroalga Chaetomorpha linum. Estuaries 22:31–38

    Article  CAS  Google Scholar 

  • Lee KS, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J Exp Mar Biol Ecol 350:144–175

    Article  Google Scholar 

  • Longstaff BJ, Loneragan NR, O’Donohue MJ, Dennison WC (1999) Effects of light deprivation on the survival and recovery of the seagrass Halophila ovalis (RBr) Hook. J Exp Mar Biol Ecol 234:1–27

    Article  Google Scholar 

  • Marba N, Hemminga MA, Duarte CM (2006) Resource translocation within seagrass clones: allometric scaling to plant size and productivity. Oecologia 150:362–372

    Article  Google Scholar 

  • Mascaro O, Valdemarsen T, Holmer M, Perez M, Romero J (2009) Experimental manipulation of sediment organic content and water column aeration reduces Zostera marina (eelgrass) growth and survival. J Exp Mar Biol Ecol 373:26–34

    Article  Google Scholar 

  • Massa SI, Arnaud-Haond S, Pearson GA, Serrao EA (2009) Temperature tolerance and survival of intertidal populations of the seagrass Zostera noltii (Hornemann) in Southern Europe (Ria Formosa, Portugal). Hydrobiologia 619:195–201

    Article  Google Scholar 

  • McGlathery K (2001) Macroalgal blooms contribute to the decline in seagrasses in nutrient-enriched coastal waters. J Phycol 37:453–456

    Article  Google Scholar 

  • McGlathery KJ, Krause-Jensen D, Rysgaard S, Christensen PB (1997) Patterns of ammonium uptake within dense mats of the filamentous macroalgae Chaetomorpha linum. Aquat Bot 59:99–115

    Article  Google Scholar 

  • Miller CJ, Campbell SJ, Scudds S (2005) Spatial variation of Zostera tasmanica morphology and structure across an environmental gradient. Mar Ecol Prog Ser 304:45–53

    Article  Google Scholar 

  • Moore KA, Jarvis JC (2008) Environmental factors affecting recent summertime eelgrass diebacks in the lower Chesapeake Bay: implications for long-term persistence. J Coastal Res 55:135–147

    Article  Google Scholar 

  • Nelson TA, Lee A (2001) A manipulative experiment demonstrates that blooms of the macroalga Ulvaria obscura can reduce eelgrass shoot density. Aquat Bot 71:149–154

    Article  Google Scholar 

  • Orth R, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck JKL, Hughes AR, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    Article  Google Scholar 

  • Paine RT, Tegner MJ, Johnson EA (1998) Compounded perturbations yield ecological surprises. Ecosystems 1:535–545

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon, Oxford

    Google Scholar 

  • Peckol P, DeMeo-Anderson B, Rivers J, Valiela I, Maldonado M, Yates J (1994) Growth, nutrient uptake capacities and tissue constituents of the macroalgae Cladophora vagabunda and Gracilaria tikvahiae related to site-specific nitrogen loading rates. Mar Biol 121:175–185

    Article  Google Scholar 

  • Pedersen MF, Borum J (1996) Nutrient control of algal growth i estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplanton and species of macroalgae. Mar Ecol Prog Ser 142:261–272

    Article  CAS  Google Scholar 

  • Peralta G, Brun FG, Hernandez I, Vergara JJ, Perez-Llorens JL (2005) Morphometric variations as acclimation mechanisms in Zostera noltii beds. Estuar Coast She S 64:347–356

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, p 537

  • Ralph PJ (1998) Photosynthetic response of laboratory-cultured Halophila ovalis to thermal stress. Mar Ecol Prog Ser 171:123–130

    Article  Google Scholar 

  • Short FT, Neckles HA (1999) The effects of global climate change on seagrasses. Aquat Bot 63:169–196

    Article  Google Scholar 

  • Short FT, Duarte CM (2001) Methods for the measurement of seagrass growth and production. In: Short FT, Coles RG (eds) Global seagrass research methods. Elsevier, Amsterdam, pp 155–182

  • Short FT, Burdick DM, Kaldy JE (1995) Mesocosm experiments quantify the effects of eutrophication on eelgrass, Zostera marina. Limnol Oceanogr 40:740–749

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 2007. Cambridge University Press, Cambridge, p 996

  • Terrados J, Duarte CM, Kamp-Nielsen L, Agawin NSR, Gacia E, Lacap D, Fortes MD, Borum J, Lubanski M, Greve TM (1999) Are seagrass growth and survival constrained by the reducing conditions of the sediment? Aquat Bot 65:175–197

    Article  Google Scholar 

  • Thomsen MS, McGlathery KJ (2007) Stress tolerance of the invasive macroalgae Codium fragile and Gracilaria vermiculophylla in a soft-bottom turbid lagoon. Biol Invasions 9:499–513

    Article  Google Scholar 

  • Thomsen MS, Wernberg T (2009) Distribution, abundance and linkages between drift algae and an invasive snail in seagrass beds in Swan River, Western Australia. Report no. CMER-2009-02 from the Centre for Marine Ecosystem Management, p 50

  • Thomsen MS, McGlathery K, Tyler AC (2006) Macroalgal distribution pattern in a shallow, soft-bottom lagoon, with emphasis on the nonnative Gracilaria vermiculophylla and Codium fragile. Estuar Coasts 29:470–478

    Google Scholar 

  • Thomsen MS, Wernberg T, Altieri A, Tuya F, Gulbransen D, McGlathery K, Holmer M, Silliman BR (2010a) Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integr Comp Biol 50:158–175

    Article  Google Scholar 

  • Thomsen MS, Wernberg T, Tyua F, Silliman B (2010b) Ecological performance and possible origin of a ubiquitous but under-studied gastropod. Est. Coast. Shelf Sci 87:501–650

    Article  Google Scholar 

  • Tweedley JR, Jackson EL, Attrill MJ (2008) Zostera marina seagrass beds enhance the attachment of the invasive alga Sargassum muticum in soft sediments. Mar Ecol Prog Ser 354:305–309

    Article  Google Scholar 

  • Van Katwijk MM, Vergeer LHT, Schmitz GWH, Roelofs JGM (1997) Ammonium toxicity in eelgrass Zostera marina. Mar Eco Prog Ser 157:159–173

    Article  Google Scholar 

  • Williams SL, Heck JKL (2001) Seagrass community ecology. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates, Inc., pp 317–338

Download references

Acknowledgments

We are grateful to Diane I. Walker and the School of Marine Botany, University of Western Australia. MH was supported by Gledden Visiting Fellowship and Danish Natural Science Foundation. MST was supported by the Danish Research Academy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Holmer.

Additional information

Communicated by P. Ralph.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 137 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmer, M., Wirachwong, P. & Thomsen, M.S. Negative effects of stress-resistant drift algae and high temperature on a small ephemeral seagrass species. Mar Biol 158, 297–309 (2011). https://doi.org/10.1007/s00227-010-1559-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1559-5

Keywords

Navigation