Skip to main content
Log in

UV-radiation versus grazing pressure: long-term floating of kelp rafts (Macrocystis pyrifera) is facilitated by efficient photoacclimation but undermined by grazing losses

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Large quantities of floating macroalgae are traveling in coastal waters of the SE Pacific and in other temperate climate zones. While afloat, these algae are potentially exposed to full solar radiation, including UVA and UVB, which can have profound effects on their physiological and growth performance. Latitudinal variations in UV-radiation (UVR) are hypothesized to affect floating algae differently with higher impacts at low latitudes than at high latitudes. In addition, UVR together with grazing might accelerate the demise of floating kelps. This hypothesis was tested with outdoor laboratory experiments in which sporophytes of the giant kelp Macrocystis pyrifera (L.) C. Agardh were exposed to a combination of different UVR regimes (PAR only, PAR + UV) and grazing at three sites along the Chilean coast (20°S, 30°S, and 40°S). A latitudinal trend in irradiance was detected with increasing values from 40°S to 20°S. Surprisingly, floating M. pyrifera responded with a high acclimation potential within this latitudinal UVR gradient. At 20°S, floating kelps were slightly sensitive to UVR, which was reflected in reduced blade growth. At 30°S, physiological responses were hardly affected by the prevailing irradiance but sporophyte growth and thus persistence mainly depended on the presence or absence of amphipod grazers. At high latitudes, grazing had only minor impacts on algal biomass and blade growth, and kelps thrived well under all tested environmental conditions. Overall, our results reveal that floating M. pyrifera was only slightly affected by UVR and that sporophytes can efficiently acclimate over a latitudinal UVR gradient that spans from 20°S to 40°S. Given this high acclimation potential, we suggest that these (and possibly other) positively buoyant algae are important dispersal agents over a wide range of temperate latitude conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilera J, Karsten U, Lippert H, Vögele B, Philipp E, Hanelt D, Wiencke C (1999) Effects of solar radiation on growth, photosynthesis and respiration of marine macroalgae from the Arctic. Mar Ecol Prog Ser 191:109–119

    Article  Google Scholar 

  • Aguirre-von-Wobeser E, Figueroa FL, Cabello-Pasini A (2000) Effect of UV radiation on photoinhibition of marine macrophytes in culture systems. J Appl Phycol 12:159–168

    Article  CAS  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Article  Google Scholar 

  • Anderson MJ (2005) PERMANOVA: a FORTAN computer program for permutational multivariate analysis of variance. Department of Statistics, University of Auckland, New Zealand

    Google Scholar 

  • Bischof K, Hanelt D, Tüg H, Karsten U, Brouwer PEM, Wiencke C (1998) Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol 20:388–395

    Article  Google Scholar 

  • Bischof K, Hanelt D, Aguilera J, Karsten U, Vögele B, Sawall T, Wiencke C (2002) Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord. I. Sensitivity of photosynthesis to ultraviolet radiation. Mar Biol 140:1097–1106

    Article  CAS  Google Scholar 

  • Bischof K, Gómez I, Molis M, Hanelt D, Karsten U, Lüder U, Roleda MY, Zacher K, Wiencke C (2006) Ultraviolet radiation shapes seaweed communities. Rev Environ Sci Biotechnol 5:141–166

    Article  CAS  Google Scholar 

  • Broitman BR, Navarrete SA, Smith F, Gaines SD (2001) Geographic variation of southeastern Pacific intertidal communities. Mar Ecol Prog Ser 224:21–34

    Article  Google Scholar 

  • Buschmann AH, Vásquez JA, Osorio P, Reyes E, Filón L, Hernández-González MC, Vega A (2004) The effect of water movement, temperature and salinity on abundance and reproductive patterns of Macrocystis spp. (Phaeophyta) at different latitudes in Chile. Mar Biol 145:849–862

    Article  Google Scholar 

  • Cabello-Pasini A, Aguirre-von-Wobeser E, Figueroa FL (2000) Photoinhibition of photosynthesis in Macrocystis pyrifera (Phaeophyceae), Chondrus crispus (Rhodophyceae) and Ulva lactuca (Chlorophyceae) in outdoor culture systems. J Photochem Photobiol B Biol 57:169–178

    Article  CAS  Google Scholar 

  • Cerda O, Karsten U, Rothäusler E, Tala F, Thiel M (2009) Compensatory growth of the kelp Macrocystis integrifolia (Phaeophyceae, Laminariales) against grazing of Peramphithoe femorata (Amphipoda, Ampithoidae) in northern-central Chile. J Exp Mar Biol Ecol 377:61–67

    Article  Google Scholar 

  • Clendennen SK, Zimmerman RC, Powers DA, Aberte RS (1996) Photosynthetic response of the giant kelp Macrocystis pyrifera (Phaeophyceae) to ultraviolet radiation. J Phycol 32:614–620

    Article  CAS  Google Scholar 

  • Colombo-Pallotta MF, García-Mendoza E, Ladah LB (2006) Photosynthetic performance, light absorption, and pigment composition of Macrocystis pyrifera (Laminariales, Phaeophyceae) blades from different depths. J Phycol 42:1225–1234

    Article  CAS  Google Scholar 

  • Dean TA (1985) The temporal and spatial distribution of underwatrer quantum irradiation in a Southern California kelp forest. Estuar Coast Shelf Sci 21:835–844

    Article  Google Scholar 

  • Demes KW, Graham MH, Suskiewicz TS (2009) Phenotypic plasticity reconciles incongruous molecular and morphological taxonomies: giant kelp Macrocystis (Laminariales, Phaeophyceae) is a monospecific genus. J Phycol 45:1266–1269

    Article  Google Scholar 

  • Deysher L, Norton TA (1982) Dispersal and colonization in Sargassum muticum (Yendo) Fensholt. J Exp Mar Biol Ecol 56:179–195

    Article  Google Scholar 

  • Dring MJ, Makarov V, Schodchina E, Lorenz M, Lüning K (1996) Influence of ultraviolet-radiation on chlorophyll fluorescence and growth in different life-history stages of three species of Laminaria (Phaeophyta). Mar Biol 126:183–191

    Article  CAS  Google Scholar 

  • Edwards MS, Kim KY (2010) Diurnal variations in relative photosynthetic performance in giant kelp Macrocystis pyrifera (Phaeophyceae, Laminariales) at different depths as estimated using PAM fluorometry. Aquat Bot 92:119–128

    Article  CAS  Google Scholar 

  • Falkowski PG, LaRoche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27:8–14

    Article  Google Scholar 

  • Figueroa FL, Salles S, Aguilera J, Jimenez C, Mercado J, Viñegla B, Flores-Moya A, Altamirano M, Helbling EW (1997) Effects of solar radiation on photoinhibition and pigmentation in the red alga Porphyra leucosticta. Mar Ecol Prog Ser 151:81–90

    Article  CAS  Google Scholar 

  • Figueroa FL, Martinez B, Israel A, Neori A, Malta EJ, Ang P, Inken S, Marquardt R, Frenk S, Korbee N (2009) Acclimation of Red Sea macroalgae to solar radiation: photosynthesis and thallus absorptance. Aquat Biol 7:159–172

    Article  Google Scholar 

  • Franklin LA, Forster RM (1997) The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur J Phycol 32:207–232

    Google Scholar 

  • Gaines SD, Lubchenco J (1982) A unified approach to marine plant herbivore interactions II biogeographic patterns. Annu Rev Ecol Syst 13:111–138

    Article  Google Scholar 

  • García-Mendoza E, Colombo-Pallotta MF (2007) The giant kelp Macrocystis pyrifera presents a different nonphotochemical quenching control than higher plants. New Phytol 173:526–536

    Article  Google Scholar 

  • Gerard VA (1982) Growth and utilization of internal nitrogen reserves by the giant kelp Macrocystis pyrifera in a low-nitrogen environment. Mar Biol 66:27–35

    Article  CAS  Google Scholar 

  • Gómez I, Figueroa FL, Ulloa N, Morales V, Lovengreen C, Huovinen P, Hess S (2004) Photosynthesis in 18 intertidal macroalgae from Southern Chile. Mar Ecol Progr Ser 270:103–116

    Article  Google Scholar 

  • Grzymski J, Johnsen G, Sakshaug E (1997) The significance of intracellular self-shading on the biooptical properties of brown, red, and green macroalgae. J Phycol 33:408–414

    Article  Google Scholar 

  • Gutow L (2003) Local population persistence as a pre-condition for large-scale dispersal of Idotea metallica (Crustacea, Isopoda) on drifting habitat patches. Hydrobiologia 503:45–48

    Article  Google Scholar 

  • Hanelt D (1998) Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar Biol 131:361–369

    Article  Google Scholar 

  • Hanelt D, Melchersmann B, Wiencke C, Nultsch W (1997) Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Mar Ecol Prog Ser 149:255–266

    Article  CAS  Google Scholar 

  • Henley WJ, Dunton KH (1995) A seasonal comparison of carbon, nitrogen, and pigment content in Laminaria solidungula and L. saccharina (Phaeophyta) in the Alaskan Arctic. J Phycol 31:325–331

    Article  Google Scholar 

  • Hernández-Carmona G, Hughes B, Graham M (2006) Reproductive longevity of drifting kelp Macrocystis pyrifera (Phaeophyceae) in Monterey Bay, USA. J Phycol 42:1199–1207

    Article  Google Scholar 

  • Hinojosa IA, Boltaña S, Lancelloti D, Macaya E, Ugalde P, Valdiva N, Vásquez N, NewmanWA ThielM (2006) Geographic distribution and description of four pelagic barnacles along the south east Pacific coast of Chile—a zoogeographical approximation. Rev Chil Hist Nat 79:13–27

    Article  Google Scholar 

  • Hinojosa I, González E, Ugalde P, Valdivia N, Macaya E, Thiel M (2007) Distribution and abundance of floating seaweeds and their associated peracarid fauna in the fjords and channels of the XI. Region, Chile. Cienc Tecnol Mar (Chile) 30:37–50

    Google Scholar 

  • Hobday AJ (2000) Age of drifting Macrocystis pyrifera (L.) C. Agardh rafts in the Southern California Bight. J Exp Mar Biol Ecol 253:97–114

    Article  Google Scholar 

  • Honkanen T, Jormalainen V (2002) Within-alga integration and compensation: effects of simulated herbivory on growth and reproduction of the brown alga Fucus vesiculosus. Int J Plant Sci 163:815–823

    Article  Google Scholar 

  • Hoyer K, Karsten U, Wiencke C (2002) Induction of sunscreen compounds in Antarctic macroalgae by different radiation conditions. Mar Biol 41:619–627

    Google Scholar 

  • Inskeep WP, Bloom PR (1985) Extinction coefficients of Chlorophyll a and b in N, N-dimetylformamide and 80% acetone. Plant Physiol 77:483–485

    Article  CAS  Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  • Karsten U (2008) Defense strategies of algae and cyanobacteria against solar ultraviolet radiation. In: Amsler CD (ed) Algal chemical ecology. Springer, New York, pp 273–295

    Chapter  Google Scholar 

  • Karsten U, Bischof K, Wiencke C (2001) Photosynthetic performance of Arctic macroalgae after transplantation from deep to shallow waters. Oecologia 127:11–20

    Article  Google Scholar 

  • Lobban CS, Harrison PJ (1994) Light and photosynthesis. In: Lobban CS, Harrison PJ (eds) Seaweed ecology and physiology. Cambridge University Press, Cambridge, pp 123–162

    Chapter  Google Scholar 

  • Macaya EC, Zuccarello GC (2010) DNA barcoding and genetic divergence in the giant kelp Macrocystis (Laminariales). J Phycol 46:736–742

    Article  CAS  Google Scholar 

  • Macaya EC, Boltaña S, Hinojosa IA, Macchiavello JE, Valdivia NA, Vásquez N, Buschmann AH, Vásquez J, Vega JMA, Thiel M (2005) Presence of sporophylls in floating kelp rafts of Macrocystis spp. (Phaeophycea) along the Chilean Pacific coast. J Phycol 41:915–922

    Article  Google Scholar 

  • Madronich S, McKenzie RL, Björn LO, Caldwell MM (1998) Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J Photochem Photobiol B Biol 46:5–19

    Article  CAS  Google Scholar 

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  • Mercado JM, Jiménez C, Niell FX, Figueroa FL (1996) Comparison of methods for measuring light absorption by algae and their application to the estimation of the package effect. Sci Mar 60:39–45

    Google Scholar 

  • Michler T, Aguilera J, Hanelt D, Bischof K, Wiencke C (2002) Long-term effects of ultraviolet radiation on growth and photosynthetic performance of polar and cold-temperate macroalgae. Mar Biol 140:1117–1127

    Article  CAS  Google Scholar 

  • Navarro NP, Mansilla A, Palacios M (2008) UVB effects on early developmental stages of commercially important macroalgae in southern Chile. J Appl Phycol 20:897–906

    Article  Google Scholar 

  • Norton TA (1977) The growth and development of Sargassum muticum (Yendo) Fensholt. J Exp Mar Biol Ecol 26:41–53

    Article  Google Scholar 

  • Nygard CA, Ekelund NGA (2006) Photosynthesis and UV-B tolerance of the marine alga Fucus vesiculosus at different sea water salinities. J Appl Phycol 18:461–467

    Article  CAS  Google Scholar 

  • Pansch C, Gómez I, Rothäusler E, Véliz K, Thiel M (2008) Species-specific defense strategies of vegetative versus reproductive blades of the Pacific kelps Lessonia nigrescens and Macrocystis integrifolia. Mar Biol 155:51–62

    Article  Google Scholar 

  • Pavia H, Toth GB (2000) Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum. Ecology 81:3212–3225

    Google Scholar 

  • Pavia H, Cervin G, Lindgren A, Aberg P (1997) Effects of UVB radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–146

    Article  CAS  Google Scholar 

  • Roleda MY, Wiencke C, Hanelt D, Bischof K (2007) Sensitivity of the early life stages of macroalgae from the northern hemisphere to ultraviolet radiation. Photochem Photobiol 83:851–862

    Article  CAS  Google Scholar 

  • Rothäusler E, Thiel M (2006) Effect of detachment status on the palatability of two kelp species. J Appl Phycol 18:423–435

    Article  Google Scholar 

  • Rothäusler E, Gómez I, Hinojosa IA, Karsten U, Tala F, Thiel M (2009) Effect of temperature and grazing on growth and reproduction of floating Macrocystis spp. (Phaephyceae) along a latitudinal gradient. J Phycol 45:547–559

    Article  Google Scholar 

  • Rothäusler E, Gómez I, Hinojosa IA, Karsten U, Tala F, Thiel M (accepted) Physiological performance of floating giant kelp Macrocystis pyrifera (Phaeophyceae): Latitudinal variability in the effects of temperature and grazing. J Phycol

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a non intrusive indicator for rapid assessment of in vivo photosynthesis. Ecol Stud 100:49–70

    CAS  Google Scholar 

  • Swanson AK, Druehl LD (2002) Induction, exudation and the UV protective role of kelp phlorotannins. Aquat Bot 73:241–253

    Article  CAS  Google Scholar 

  • Tala F, Edding M (2005) Growth and tissue loss in blades of Lessonia nigrescens and Lessonia trabeculata (Laminariales, Phaeophyceae) in northern Chile. Aquat Bot 82:39–54

    Article  Google Scholar 

  • Tala F, Véliz K, Gómez I, Edding M (2007) Early life stages of the south Pacific kelps Lessonia nigrescens and Lessonia trabeculata (Laminariales, Phaeophyceae) show recovery capacity following exposure to UV radiation. Phycologia 46:467–470

    Article  Google Scholar 

  • Thiel M, Gutow L (2005a) The ecology of rafting in the marine environment I. The floating substrata. Oceanogr Mar Biol Annu Rev 42:181–264

    Google Scholar 

  • Thiel M, Gutow L (2005b) The ecology of rafting in the marine environment II. The rafting organisms and community. Oceanogr Mar Biol Annu Rev 43:279–418

    Article  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology. Their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • Van Alstyne KL (1988) Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus. Ecology 69:655–663

    Article  Google Scholar 

  • Van de Poll WH, Eggert A, Buma GJ, Breeman A (2001) Effects of UV-B induced DNA damage and photoinhibition on growth of temperate marine red macrophytes: habitat-related differences in UV-B tolerance. J Phycol 37:30–37

    Article  Google Scholar 

  • Vandendriessche S, Vincx M, Degraer S (2007a) Floating seaweed and the influences of temperature, grazing and clump size on raft longevity—A microcosm study. J Exp Mar Biol Ecol 343:64–71

    Article  Google Scholar 

  • Vandendriessche S, Messiaen M, O’Flynn S, Vincx M, Degraer S (2007b) Hiding and feeding in floating seaweed: floating seaweed clumps as possible refuges or feeding grounds for fishes. Est Coast Shelf Sci 71:691–703

    Article  Google Scholar 

  • Véliz K, Edding M, Tala F, Gómez I (2006) Effects of ultraviolet radiation on different life cycle stages of the south Pacific kelps, Lessonia nigrescens and Lessonia trabeculata (Laminariales, Phaeophyceae). Mar Biol 149:115124

    Article  Google Scholar 

  • Von Ende CN (1993) Repeated-measures analysis: Growth and other time-dependent measures. In: Schreiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman and Hall, New York, pp 113–137

    Google Scholar 

  • Whitehead RF, de Mora SJ, Demers S (2000) Enhanced UV radiation—a new problem for the marine environment. In: de Mora S, Demers S, Vernet M (eds) The effects of UV radiation in the marine environment. Cambridge University Press, Cambridge, pp 1–34

    Chapter  Google Scholar 

  • Wiencke C, Clayton MN, Gómez I, Iken K, Lüder UH, Amsler CD, Karsten U, Hanelt K, Bischof K, Dunton K (2006) Life strategy, ecophysiology and ecology of seaweeds in polar waters. Rev Environ Sci Biotechnol 6:95–126

    Article  Google Scholar 

  • Wiencke C, Lüder UH, Roleda MY (2007) Impact of ultraviolet radiation on physiology and development of zoospores of the brown alga Alaria esculenta from Spitsbergen. Physiol Plant 130:601–612

    Article  CAS  Google Scholar 

  • Yakovleva IM, Titlyanov EA (2001) Effect of high visible and UV irradiance on subtidal Chondrus crispus: stress, photoinhibition and protective mechanisms. Aquat Bot 71:47–61

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by FONDECYT 1060127 to MT, FT and IG. The first author is grateful to the German Academic Exchange Service (DAAD) and the FAZIT-Stiftung for financial support during her PhD thesis. We thank Ivan Hinojosa, Leonardo Miranda, Osvaldo Cerda, and Mario Villegas for their valuable help in the field and during the experiments. Finally, we are grateful to two anonymous reviewers who helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Thiel.

Additional information

Communicated by P. Kraufvelin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothäusler, E., Gómez, I., Karsten, U. et al. UV-radiation versus grazing pressure: long-term floating of kelp rafts (Macrocystis pyrifera) is facilitated by efficient photoacclimation but undermined by grazing losses. Mar Biol 158, 127–141 (2011). https://doi.org/10.1007/s00227-010-1547-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1547-9

Keywords

Navigation