Marine Biology

, Volume 158, Issue 1, pp 47–58 | Cite as

Problems of the gonad index and what can be done: analysis of the purple sea urchin Strongylocentrotus purpuratus

  • T. A. EbertEmail author
  • J. C. Hernandez
  • M. P. Russell
Original Paper


The gonad index, GI, is widely used as a measure of changes in reproductive state. There are, however, problems with its use because it is based on the implicit assumption of an isometric relationship between gonad size and some measure of total size. If, for example, gonad weight and total weight are used, the exponent for an allometric relationship usually is ignored and hence assumed to be 1.0. It is further assumed that this exponent is fixed for all states of the reproductive cycle and that gonads begin to develop at size = 0. Data for the purple sea urchin Strongylocentrotus purpuratus at Gregory Point, Oregon, USA, gathered over a period of 31 months showed that these assumptions cannot be supported. The relationship is better modeled with a function that (1) takes into account size of initial gonad production and (2) allows allometric exponents that vary with site or season. Thus, a better approach is to use a wide range of sizes to estimate size when gonads begin to develop and then, with this correction, ANCOVA to test for differences of gonad size among samples. Gonad changes at Gregory Point were estimated using fixed sizes of 5 cm diameter and 60 g total weight. Publishing means for X and Y, the standard error of the estimate, R 2, and slope for each regression are shown to be sufficient to compare our results with results across studies.


Logarithmic Transformation Gonad Development Gonad Index Gonad Weight Test Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dissections of sea urchins from Gregory Point were done by B. Miller. Those from Arena Cove, California, were done by M. Morris and N. Sandoval. Assistance with dissections from Yaquina Head, Oregon, was by C. Ebert. The manuscript benefited from comments made by 3 anonymous reviewers. Funding for this work was from the Ocean Sciences Division Biological Oceanography of the US National Science Foundation (grants OCE 84-01415 and OCE-0623934). We are grateful for all of this support.

Supplementary material

227_2010_1541_MOESM1_ESM.xls (20 kb)
Supplementary material 1 (XLS 19 kb)


  1. Atchley WR, Gaskins CT, Anderson D (1976) Statistical properties of ratios. I. Empirical results. Syst Zool 25:137–148. doi: 10.2307/2412740 CrossRefGoogle Scholar
  2. Barker MF, Xu RA (1991) Population differences in gonad and pyloric caeca cycles of the New Zealand seastar Sclerasterias mollis (Echinodermata: Asteroidea). Mar Biol 108:97–103. doi: 10.1007/BF01320228 CrossRefGoogle Scholar
  3. Beaupre SJ, Dunham AE (1995) A comparison of ratio-based and covariance analyses of a nutritional data set. Funct Ecol 9:876–880CrossRefGoogle Scholar
  4. Bennett J, Giese AC (1955) The annual reproductive and nutritional cycles in two western sea urchins. Biol Bull 109:226–237CrossRefGoogle Scholar
  5. Bernard FR (1977) Fishery and reproductive cycle of the Red Sea urchin, Strongylocentrotus franciscanus, in British Columbia. J Fish Res Bd Can 34:604–610Google Scholar
  6. Bigatti, G, Marzinelli EM, Cledón M, Penchaszadeh PE (2004) Gonadal cycle of Pseudechinus magellanicus (Philippi, 1857) (Echinoidea: Temnopleuridae) from Patagonia, Argentina. In: Heinzeller T, Nebelsick JH (eds) Echinoderms: München. Proceedings, 11th international echinoderm conference, A. A. Balkema, Leiden, The Netherlands, pp 11–14Google Scholar
  7. Boivin Y, Larrivée D, Himmelman JH (1986) Reproductive cycle of the subarctic brooding asteroid Leptasterias polaris. Mar Biol 92:329–337. doi: 10.1007/BF00392673 CrossRefGoogle Scholar
  8. Bourgoin A, Guillou M (1990) Variations in the reproductive cycle of Acrocinida brachiat a (Echinodermata: Ophiuroidea) according to environment in the Bay of Douarnenez (Brittany). J Mar Biol Ass UK 70:57–66. doi: 10.1017/S0025315400034196 CrossRefGoogle Scholar
  9. Byrne M (1992) Reproduction of sympatric populations of Patiriella gunnii, P. calcar and P. exigua in New South Wales, asterinid sea stars with direct development. Mar Biol 114:297–316. doi: 10.1007/BF00349533 CrossRefGoogle Scholar
  10. Byrne M, Morrice MG, Wolf B (1997) Introduction of the northern Pacific asteroid Asterias amurensis to Tasmania: reproduction and current distribution. Mar Biol 127:673–685. doi: 10.1007/s002270050058 CrossRefGoogle Scholar
  11. Byrne M, Andrew NL, Worthington DG, Brett PA (1998) Reproduction in the diadematoid sea urchin Centrostephanus rodgersii in contrasting habitats along the coast of New South Wales, Australia. Mar Biol 132:305–318. doi: 10.1007/s002270050396 CrossRefGoogle Scholar
  12. Cameron JL, Fankboner PV (1986) Reproductive biology of the commercial sea cucumber Parastichopus californicus (Stimpson) (Echinodermata: Holothuroidea). I. Reproductive periodicity and spawning behavior. Can J Zool 64:168–175. doi: 10.1139/z86-027 CrossRefGoogle Scholar
  13. Chadwick-Furman NE, Spiegel M, Nir I (2000) Sexual reproduction in the tropical corallimorpharian Rhodactis rhodostoma. Invert Biol 119:361–369CrossRefGoogle Scholar
  14. Chao S-M, Chen C-P, Alexander PS (1995) Reproductive cycles of tropical sea cucumbers (Echinodermata: Holothuroidea) in southern Taiwan. Mar Biol 122:289–295. doi: 10.1007/BF00348942 Google Scholar
  15. Chen B-Y, Chen C-P (1992) Reproductive cycle, larval development, juvenile growth and population dynamics of Patiriella psudoexigua (Echinodermata: Asteroidea) in Taiwan. Mar Biol 113:271–280. doi: 10.1007/BF00347281 Google Scholar
  16. Christians JK (1999) Controlling for body mass effects: is part-whole correlation important? Physiol Biochem Zool 72:250–253. doi: 10.1086/316661 CrossRefGoogle Scholar
  17. Costa PAS, Fernandes FC (1993) Reproductive cycle of Loligo sanpaulensis (Cephalopoda: Loliginidae) in the Cabo Frio region, Brazil. Mar Ecol Prog Ser 101:91–97CrossRefGoogle Scholar
  18. Damián GG, Zaixso HE, Tolosano JA (2009) Brooding of the sub-Antarctic heart urchin, Abatus cavernosus (Spatangoida: Schizasteridae), in southern Patagonia. Mar Biol 156:1647–1657. doi: 10.1007/s00227-009-1200-7 CrossRefGoogle Scholar
  19. de Vlaming V, Grossman G, Chapman F (1982) On the use of the gonosomatic index. Comp Biochem Physiol A 73:31–39. doi: 10.1016/0300-9629(82)90088-3 CrossRefGoogle Scholar
  20. Diez MJ, Lovrich GA (2010) Reproductive biology of the crab Halicarcinus planatus (Brachyura, Hymenosomatidae) in sub-Antarctic waters. Polar Biol doi: 10.1007/s00300-009-0716-0
  21. Ebert TA (1968) Growth rates of the sea urchin Strongylocentrotus purpuratus related to food availability and spine abrasion. Ecology 49:1075–1091. doi: 10.2307/1934491 CrossRefGoogle Scholar
  22. Ebert TA (1975) Growth and mortality of post-larval echinoids. Am Zool 15:755–775Google Scholar
  23. Ebert TA (1998) An analysis of the importance of Allee effects in management of the red sea urchin Strongylocentrotus franciscanus. In: Mooi R, Telford M (eds) Echinoderms: San Francisco. Proceedings, 9th international echinoderm conference, A. A. Balkema, Brookfield, Vermont, pp 619–627Google Scholar
  24. Ebert TA (2007) Growth and survival of postsettlement sea urchins. In: Lawrence JM (ed) Edible sea urchins: biology and ecology. Developments in aquaculture and fisheries science, vol 37. Elsevier, Amsterdam, pp 95–134Google Scholar
  25. Ebert TA (2008) Longevity and lack of senescence in the red sea urchin Strongylocentrotus franciscanus. Exp Gerontol 43:734–738. doi: 10.1016/j.exger.2008.04.015 CrossRefGoogle Scholar
  26. Ebert TA (2010a) Demographic patterns of the purple sea urchin Strongylocentrotus purpuratus along a latitudinal gradient, 1985–1987. Mar Ecol Prog Ser 406:105–120. doi: 10.3354/meps08547 CrossRefGoogle Scholar
  27. Ebert TA (2010b) Potential use of production and biomass for life-history comparisons of sea urchins. Proceedings 13th international echinoderm conference, Hobart, Tasmania (in press)Google Scholar
  28. Ebert TA, Russell MP (1994) Allometry and model II nonlinear regression. J Theor Biol 168:367–372CrossRefGoogle Scholar
  29. Ford CE (1964) Reproduction in the aggregating sea anemone Anthopleura elegantissima. Pac Sci 18:138–145Google Scholar
  30. Giese AC (1966) On the biochemical constitution of some echinoderms. In: Boolootian RA (ed) Physiology of Echinodermata. Interscience Publishers (Wiley), New York, pp 757–796Google Scholar
  31. Giese AC (1967) Changes in body-component indexes and respiration with size in the purple sea urchin Strongylocentrotus purpuratus. Physiol Zool 40:194–200Google Scholar
  32. Giese AC, Greenfield L, Huang H, Farmanfarmaian A, Boolootian R, Lasker R (1959) Organic productivity in the reproductive cycle of the purple sea urchin. Biol Bull 116:49–58CrossRefGoogle Scholar
  33. Gonor JJ (1972) Gonad growth in the sea urchin, Strongylocentrotus purpuratus (Stimpson) (Echinodermata: Echinoidea) and the assumptions of gonad index methods. J Exp Mar Biol Ecol 10:89–103. doi: 10.1016/0022-0981(72)90095-0 CrossRefGoogle Scholar
  34. Guettaf M, San Martin GA, Francour P (2000) Interpopulation variability of the reproductive cycle of Paracentrotus lividus (Echinodermata: Echinoidea) in the south-western Mediterranean. J Mar Biol Ass UK 80:899–907. doi: 10.1017/S0025315400002885 CrossRefGoogle Scholar
  35. Guillou M, Lumingas LJL (1998) The reproductive cycle of the ‘blunt’ sea urchin. Aquacul Internat 6:147–160. doi: 10.1023/A:1009290307840 CrossRefGoogle Scholar
  36. Guillou M, Lumingas LJL (1999) Variation in the reproductive strategy of the sea urchin Sphaerechinus granularis (Echinodermata: Echinoidea) related to food availability. J Mar Biol Ass UK 79:131–136. doi: 10.1017/S0025315498000149 CrossRefGoogle Scholar
  37. Gutt J, Gerdes D, Klages M (1992) Seasonality and spatial variability in the reproduction of two Antarctic holothurians (Echinodermata). Polar Biol 11:533–544. doi: 10.1007/BF00237946 CrossRefGoogle Scholar
  38. Hatfield EMC, Murray AWA (1999) Objective assessment of maturity in the Patagonian squid Loligo gahi (Cephalopoda: Loliginidae) from Falkland Islands waters. ICES J Mar Sci 56:746–756. doi: 10.1006/jmsc.1999.0514 CrossRefGoogle Scholar
  39. Hines AH (1979) Effects of thermal discharge on reproductive cycles in Mytilus edulis and Mytilus californianus (Mollusca, Bivalvia). Fish Bull 77:498–503Google Scholar
  40. Hughes AD, Kelly MS, Barnes DKA, Catarino AI, Black KD (2006) The dual functions of sea urchin gonads are reflected in the temporal variations of their biochemistry. Mar Biol 148:789–798. doi: 10.1007/s00227-005-0124-0 CrossRefGoogle Scholar
  41. Kato S, Schroeter SC (1985) Biology of the red sea urchin, Strongylocentrotus franciscanus, and its fishery in California. Mar Fish Rev 47:1–20Google Scholar
  42. Kelly MS, Owen PV, Pantazis P (2001) The commercial potential of the common sea urchin Echinus esculentus from the west coast of Scotland. Hydrobiol 465:85–94. doi: 10.1023/A:1014553010711 CrossRefGoogle Scholar
  43. Kirby S, Lamare MD, Barker MF (2006) Growth and morphometrics in the New Zealand sea urchin Pseudechinus huttoni (Echinoidea: Temnopleuridae). NZ J Mar Freshwater Res 40:413–428. doi: 0028-8330/06/4003-0413 CrossRefGoogle Scholar
  44. Kramer DE, Nordin DMA (1975) Physical data from a study of size, weight and gonad quality for the red sea urchin [Strongylocentrotus franciscanus (Agassiz)] over a one-year period. Fish Res Bd Can Manuscript Rpt Ser No 1372, 91 ppGoogle Scholar
  45. Laegdsgaard P, Byrne M, Anderson DT (1991) Reproduction of sympatric populations of Heliocidaris erythrogramma and H. tuberculata (Echinoidea) in New South Wales. Mar Biol 110:359–374. doi: 10.1007/BF01344355 CrossRefGoogle Scholar
  46. Lau DCC, Lau SCK, Qian P-Y, Qiu J-W (2009) Morphological plasticity and resource allocation in response to food limitation and hyposalinity in a sea urchin. J Shellfish Res 28:383–388CrossRefGoogle Scholar
  47. Lawrence JM (1973) Level, content, and caloric equivalents of the lipid, carbohydrate, and protein in the body components of Luidia clathrata (Echinodermata: Asteroidea: Platyasterida) in Tampa Bay. J Exp Mar Biol Ecol 11:263–274. doi: 10.1016/0022-0981(73)90026-9 CrossRefGoogle Scholar
  48. Lawrence JM, Byrne M (1994) Allocation of resources to body components in Heliocidaris erythrogramma and Heliocidaris tuberculata (Echinodermata: Echinoidea). Zool Sci 11:133–137Google Scholar
  49. Lawrence JM, Lawrence AL, Holland ND (1965) Annual cycle in the size of the gut of the purple sea urchin, Strongylocentrotus purpuratus (Stimpson). Nature 205:1238–1239. doi: 10.1038/2051238a0 CrossRefGoogle Scholar
  50. Lefebvre A, Davoult D, Gentil F, Janquin MA (1999) Spatio-temporal variability in the gonad growth of Ophiothrix fragilis (Echinodermata: Ophiuroidea) in the English Channel and estimation of carbon and nitrogen outputs towards the pelagic system. Hydrobiologia 414:25–34. doi: 10.1023/A:1003827532385 CrossRefGoogle Scholar
  51. Lessios HA (1981) Reproductive periodicity of the echinoids Diadema and Echinometra on the two coasts of Panama. J Exp Mar Biol Ecol 50:47–61. doi: 10.1016/0022-0981(81)90062-9 CrossRefGoogle Scholar
  52. Lester SE, Gaines SD, Kinlan BP (2007) Reproduction on the edge: large-scale patterns of individual performance in a marine invertebrate. Ecology 88:2229–2239. doi: 10.1890/06-1784.1 CrossRefGoogle Scholar
  53. Lewis JB (1958) The biology of the tropical sea urchin Tripneustes esculentus Leske in Barbados, British West Indies. Can J Zool 36:607–621Google Scholar
  54. Lewis JB (1966) Growth and breeding in the tropical echinoid Diadema antillarum Phillipi. Bull Mar Sci 16:151–158Google Scholar
  55. Lewis JB, Storey GS (1984) Differences in morphology and life history traits of the echinoid Echinometra lucunter from different habitats. Mar Ecol Prog Ser 15:207–211CrossRefGoogle Scholar
  56. Liermann M, Steel A, Rosingard M, Guttorp P (2004) Random denominators and the analysis of ratio data. Envir Ecol Stat 11:55–71. doi: 10.1023/B:EEST.0000011364.71236.f8 CrossRefGoogle Scholar
  57. Liu JH (1994) The ecology of the Hong Kong limpets Cellana grata (Gould 1859) and Patelloida pygmaea (Dunker 1860): reproductive biology. J Moll Stud 60:97–111CrossRefGoogle Scholar
  58. Lozano J, Galera J, López S, Turon X, Palacin C, Morera G (1995) Biological cycles and recruitment of Paracentrotus lividus (Echinodermata: Echinoidea) in two contrasting habitats. Mar Ecol Prog Ser 122:179–191. doi: 10.3354/meps122179 CrossRefGoogle Scholar
  59. MacCord FS, Ventura CRR (2004) Reproductive cycle of the endemic cassiduloid Cassidulus mitis (Echinoidea: Cassiduloida) on the Brazilian coast. Mar Biol 145:603–612. doi: 10.1007/s00227-004-1344-4 CrossRefGoogle Scholar
  60. Marsh AG, Watts SA (2007) Biochemical and energy requirements of gonad development. In: Lawrence JM (ed) Edible sea urchins: biology and ecology. Developments in aquaculture and fisheries science, vol 37. Elsevier, Amsterdam, pp 35–53Google Scholar
  61. McCarthy DA, Young CM (2002) Gametogenesis and reproductive behavior in the echinoid Lytechinus variegatus. Mar Ecol Prog Ser 233:157–168. doi: 10.3354/meps233157 CrossRefGoogle Scholar
  62. McPherson BF (1965) Contributions to the biology of the sea urchin Tripneustes ventricosus. Bull Mar Sci 15:228–244Google Scholar
  63. Moore HB, Jutare T, Jones JA, McPherson BF, Roper CFE (1963) A contribution to the biology of Tripneustes esculentus. Bull Mar Sci Gulf Carib 13:267–281Google Scholar
  64. Nicastro KR, Zardi GI, McQuaid CD (2010) Differential reproductive investment, attachment strength and mortality of invasive and indigenous mussels across heterogeneous environments. Biol Invasions doi: 10.1007/s10530-009-9619-9
  65. Nichols D, Barker MF (1984) Reproductive and nutritional periodicities in the starfish, Marthasterias glacialis, from Plymouth Sound. J Mar Biol Ass UK 64:461–470. doi: 10.1017/S0025315400030137 CrossRefGoogle Scholar
  66. Nojima S (1979) Ecological studies of a sea star, Astropecten latespinosus Meissner. I. Survivorship curve and life history. Publ Amakusa Mar Biol Lab 5:45–65Google Scholar
  67. Olive PJW, Porter JS, Sandeman NJ, Wright NH, Bentley MG (1997) Variable spawning success of Nepthys hombergi (Annelida: Polychaeta) in response to environmental variation a life history homeostasis? J Exp Mar Biol Ecol 215:247–268. doi: 10.1016/S0022-0981(97)00047-6 CrossRefGoogle Scholar
  68. Ong Che RG, Gomez ED (1985) Reproductive periodicity of Holothuria scabra jaeger at Calatagan, Batangas, Philippines. Asian Mar Biol 2:21–30Google Scholar
  69. Packard GC, Boardman TJ (1987) The misuse of ratios to scale physiological data that vary allometrically with body size. In: Feder ME, Bennett AF, Burggren WW, Huey RB (eds) New directions in ecological physiology. Cambridge University Press, Cambridge, pp 216–239Google Scholar
  70. Packard GC, Boardman TJ (1999) The use of percentages and size-specific indices to normalize physiological data for variation in body size: wasted time, wasted effort? Comp Biochem Physiol A 122:37–44CrossRefGoogle Scholar
  71. Pearse JS (1968) Patterns of reproductive periodicities in four species of Indo-Pacific echinoderms. Proc Indian Acad Sci B 68:247–279Google Scholar
  72. Pérez-González R, Puga-López D, Castro-Longoria R (2009) Ovarian development and size at sexual maturity of the Mexican spiny lobster Panulirus inflatus. NZ J Mar Freshwater Res 43:163–172. doi: 10.1080/00288330909509990 CrossRefGoogle Scholar
  73. Quackenbush LS, Herrnkind WF (1981) Regulation of molt and gonadal development in the spiny lobster, Panulirus argus (Crustacea: Palinuridae): effect of eyestalk ablation. Comp Biochem Physiol A 69:523–627. doi: 10.1016/0300-9629(81)93014-0 CrossRefGoogle Scholar
  74. Raubenheimer D, Simpson SJ (1992) Analysis of covariance: an alternative to nutritional indices. Entomol Exp Appl 62:221–231CrossRefGoogle Scholar
  75. Raymond BG, Scheibling RE (1987) Recruitment and growth of the sea urchin Strongylocentrotus droebachiensis (Muller) following mass mortalities off Nova Scotia, Canada. J Exp Mar Biol Ecol 108:31–54. doi: 10.1016/0022-0981(87)90129-8 CrossRefGoogle Scholar
  76. Robb RC (1929) On the nature of hereditary size-limitation. II. The growth of parts in relation to the whole. Brit J Exp Bio 6:311–324Google Scholar
  77. Russell MP (1998) Resource allocation plasticity in sea urchins: rapid, diet induced, phenotypic changes in the green sea urchin, Strongylocentrotus droebachiensis (Müller). J Exp Mar Biol Ecol 220:1–14. doi: 10.1016/S0022-0981(97)00079-8 CrossRefGoogle Scholar
  78. Selden R, Johnson AS, Ellers O (2009) Waterborne cues from crabs induce thicker skeletons, smaller gonads and size-specific changes in growth rate in sea urchins. Mar Biol 156:1057–1071. doi: 10.1007/s00227-009-1150-0 CrossRefGoogle Scholar
  79. SYSTAT (2004) SYSTAT 11. SYSTAT Software, Inc, Richmond, CAGoogle Scholar
  80. Town JC (1980) Movement, morphology, reproductive periodicity, and some factors affecting gonad production in the seastar, Asterstole scabra (Hutton). J Exp Mar Biol Ecol 44:111–132. doi: 10.1016/0022-0981(80)90149-5 CrossRefGoogle Scholar
  81. Vadas RL Sr, Beal B, Dowlin T, Fegley JC (2000) Experimental field tests of natural algal diets on gonad index and quality in the green sea urchin, Strongylocentrotus droebachiensis: a case for rapid summer production in post-spawned animals. Aquaculture 182:115–135. doi: 10.1016/S0044-8486(99)00254-9 CrossRefGoogle Scholar
  82. Vernon JD, McClintock JB, Hopkins TS, Watts SA, Marion KR (1993) Reproduction of Clypeaster ravenelii (Echinodermata: Echinoidea) in the northern Gulf of Mexico. Invert Reprod Dev 24:71–78Google Scholar
  83. Zar JH (1974) Biostatistical analysis. Prentice-Hall, Inc., Englewood Cliffs, NJGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • T. A. Ebert
    • 1
    Email author
  • J. C. Hernandez
    • 2
    • 3
  • M. P. Russell
    • 2
  1. 1.Department of ZoologyOregon State UniversityCorvallisUSA
  2. 2.Department of BiologyVillanova UniversityVillanovaUSA
  3. 3.Departamento de Biología Animal (Ciencias Marinas) Universidad de La LagunaTenerifeIslas Canarias

Personalised recommendations