Skip to main content

Advertisement

Log in

Alimentary niche partitioning in the Galapagos sea lion, Zalophus wollebaeki

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Sea lions are generally considered opportunistic feeders. However, studies from different areas suggest their diet consists mostly of four to five types of prey. Previous studies in Galapagos sea lions have identified at least three feeding strategies for this species, suggesting diversification of their diet. Diet diversification is favored in organisms with relatively high trophic position and subject to high intra-specific and low inter-specific competition. Zalophus wollebaeki meet these criteria as the only pinniped on San Cristobal Island, where three sea lion rookeries are located within 11 km: a distance considerably shorter than their 41 km foraging range. To measure the degree of diet diversification, we used scats and stable isotope analyses. A total of 270 scat samples from lactating females and 142 fur samples from sea lion pups were collected during the breeding season 2006. The scat analysis identified distinct diets among rookeries, with minimal trophic overlap ( = 0.19), a trophic level TL = 4.5 (secondary–tertiary carnivore), and trophic breadth of a specialist predator (B i  = 0.37). The mean δ15N and δ13C values were 13.07 ± 0.52 and −16.34 ± 0.37, respectively. No significant difference was found in the δ15N values from the sea lion rookeries, but differences were found inter- and intra-population in δ13C values for pups from different groups (ANOVA P < 0.05). Our results indicate that diet diversification is present in the Galapagos sea lion and may play important role to the survival of the species in a habitat where pinniped populations are limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aurioles D, Trillmich F (2008) Zalophus wollebaeki. In: IUCN 2008. IUCN Red List of Threatened Species: www.iucnredlist.org

  • Aurioles-Gamboa D, Camacho-Rios F (2007) Diet and Feeding Overlap of Two Otariids, Zalophus californianus and Arctocephalus townsendi: implications to survive environmental uncertainty. Aquatic Mammals 33 (3)

  • Aurioles-Gamboa D, Koch PL, Le Boeuf BJ (2006) Differences in foraging location of Mexican and California elephant seals: evidence from stable isotopes in pups. Mar Mammal Sci 22:326–338

    Article  Google Scholar 

  • Aurioles-Gamboa D, Newsome SD, Salazar-Pico S, Koch PL (2009) Stable isotope differences between sea lions of the genus Zalophus from the Gulf of California and Galápagos Islands. J Mammal 90(6):1410–1420

    Article  Google Scholar 

  • Bauer RD, Peterson RS, Scheffer VB (1964) Age of northern fur seal at completion of its first molt. J Mammol 45(2):299–300

    Article  Google Scholar 

  • Bearhop S, Colin E, Adams S, Fuller R, Macleod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012

    Article  Google Scholar 

  • Beltman JB, Metz JA (2005) Speciation: more likely through a genetic or through a learned habitat preference? Proc R Soc B 272:1455–1463

    Article  CAS  PubMed  Google Scholar 

  • Beltman JB, Haccou P, Cate C (2004) Learning and colonization of new niches: a first step toward speciation. Evolution 58(1):35–46

    PubMed  Google Scholar 

  • Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161(1):1–28

    Article  PubMed  Google Scholar 

  • Burton RK, Koch PL (1999) Isotopic tracking of foraging and long distance migration in northeastern Pacific pinnipeds. Oecologia 119:578–585

    Article  Google Scholar 

  • Carretta JV, Forney KA, Muto MM, Barlow J, Baker J, Hanson B, Lowry MS (2007) U.S. Pacific Marine Mammal Stock Assessments: 2006. U.S. Dep. Commer. NOAA Tech. Memo. NOAA-TM-NMFS-SWFSC-398

  • Christensen V, Pauly D (1992) ECOPATH II Software for balancing steady-state ecosystem models and calculating network characteristics. Ecol Model 61:169–185

    Article  Google Scholar 

  • Clementz MT, Koch PL (2001) Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129:461–472

    Google Scholar 

  • Costa DP, Gales NJ (2003) Energetics of a benthic diver: Seasonal foraging ecology of the Australian sea lion, Neophoca Cinerea. Ecol Monogr 73(1):27–43

    Article  Google Scholar 

  • Costa DP, Weise MJ, Arnould JP (2006) Potential influences of whaling on the status and trends of pinniped populations. University of California Press. Berkeley, Los Angeles

    Google Scholar 

  • Darimont CT, Reimchen TE (2002) Intra-fur stable isotope analysis implies seasonal shift to salmon in gray wolf diet. Can J Zool 80:1638–1642

    Article  Google Scholar 

  • Dellinger T (1987) Das Nahrungsspektrum der Sympathiscen Galápagos-Seebaren: (Arctocephalus galapagoensis) und Galápago-Seelowen (Zalophus californianus wollebaeki) mit versuchen zur methodik der kotanalse. Diploma Thesis. University Konstanz, Germany

  • Dellinger T, Trillmich F (1999) Fish prey of the sympatric Galapagos fur seals and sea lions: seasonal variation and niche separation. Can J Zool 77:1204–1216

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of the diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of the diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–353

    Article  CAS  Google Scholar 

  • Díaz MB (2007) Catálogo de otolitos de peces marinos de las costas adyacentes a Baja California Sur. Dissertation, Universidad Autónoma de Baja California Sur, Mexico

  • Estes JA, Riedman ML, Staedler MM, Tinker MT, Lyon BE (2003) Individual variation in prey selection by sea otters: patterns, causes and implications. J Anim Ecol 72:144–155

    Article  Google Scholar 

  • Ferry LA, Clark SL, Cailliet GM (1997) Food habits of spotted sand bass (Paralabrax maculatofasciatus, (Serranidae) from Bahia de Los Angeles, Baja California. Bull South Califor Acad Sci 96:1–21

    Google Scholar 

  • Fowler SL, Costa DP, Arnould JA, Gales NJ, Kuhn CE (2006) Ontogeny of diving behaviour in the Australian sea lion: trials of adolescence in a late bloomer. J Anim Ecol 75:358–367

    Article  PubMed  Google Scholar 

  • Fowler SL, Costa DP, Arnould JA (2007) Ontogeny of movements and foraging ranges in the Australian sea lion. Mar Mammal Sci 23:598–614

    Article  Google Scholar 

  • France RL (1995) Carbon-13 enrichment in benthic compared to planktonic algae: Foodweb implications. Mar Ecol Prog Ser 124:307–312

    Article  Google Scholar 

  • Fry B, Wainright SC (1991) Diatom sources of 13C-rich carbon in marine food webs. Mar Ecol Prog Ser 76:149–157

    Article  Google Scholar 

  • García-Godos I (2001) Patrones morfológicos del otolito sagitta de algunos peces óseos del mar peruano. Inst Mar Perú

  • García-Rodríguez FJ, Aurioles-Gamboa D (2004) Spatial and temporal variations in the diet of the California sea lion (Zalophus californianus) in the Gulf of California, México. Fish Bull 102:47–62

    Google Scholar 

  • Goericke R, Fry B (1994) Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean. Global Biogeochem Cycles 8:85–90

    Article  CAS  Google Scholar 

  • Hammann MG, Nevarez-Martínez MO, Green-Ruíz Y (1998) Spawning habitat of the Pacific sardine (Sardinops sagax) in the Gulf of California: egg and larval distribution 1956–1957 and 1971–1991. CalCOFI Rep 39:169–179

    Google Scholar 

  • Hastings PA, Findley LT, Van der Heiden AM (2010) In: Brusca R (ed) Fishes of the Gulf of California. Arizona University Press, Tucson

    Google Scholar 

  • Heath CB (2002) California, Galapagos, and Japanese sea lions Zalophus californianus, Z. wollebaeki, and Z. japonicus. In: Perrin WF, Wursig B, Thiewissen JGM (eds) Encyclopedia of marine mammals. Academic Press, London

    Google Scholar 

  • Hobson KA, Schell MD, Renouf D, Noseworthy E (1996) Stable carbon and nitrogen isotopic fractionation between diet and tissues of captive seals: implications for dietary reconstructions involving marine mammals. J Fish Aquat Sci 53:528–533

    Article  Google Scholar 

  • Hobson KA, Fisk A, Karnovsky N, Holst M, Gagnon JM, Fortier M (2002) A stable isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep-Sea Res II 49:5131–5150

    Article  CAS  Google Scholar 

  • Horn HS (1966) Measurement of overlap in comparative ecological studies. Am Nat 100:419–424

    Article  Google Scholar 

  • Jaeger A, Blanchard P, Richard P, Cherel Y (2009) Using carbon and nitrogen isotopic values of body feathers to infer inter- and intra-individual variations of seabird feeding ecology during moult. Mar Biol 156:1233–1240

    Article  Google Scholar 

  • Kastak CR, Schusterman RJ (2002) Long-term memory for concepts in a California sea lion (Zalophus californianus). Anim Cogn 5:225–232

    Article  Google Scholar 

  • King JE (1983) Seals of the world. Cornell University Press, Ithaca

    Google Scholar 

  • Krebs CJ (1999) Ecological methodology. Addison Wesley/Longman, California

    Google Scholar 

  • LeBoeuf BJ, Crocker DE, Costa DP, Blackwell SB, Webb PM, Houser DS (2000) Foraging ecology of northern elephant seals. Ecol Monogr 70(3):353–382

    Article  Google Scholar 

  • Lewis R, Connell TC, Lewis M, Campagna C, Hoelzel AR (2006) Sex specific foraging strategies and resource partitioning in the southern elephant seal (Mirounga leonina). Proc R Soc B 273:2901–2907

    Article  PubMed  Google Scholar 

  • Lluch-Cota DB, Hernández-Vásquez B, Lluch-Cota SE (1997) Empirical investigation on the relationship between climate and small pelagic global regimes and El Niño-Southern Oscillation (ENSO). FAO Fisheries Circular. 934

  • Lowry MS, Maravilla-Chavez O (2005) Recent abundance of California sea lions in western Baja California, Mexico and the United States. In: Proceedings of the sixth California Islands symposium, pp 485–497

  • Lowry MS, Stewart BS, Heath CB, Yochem PK, Francis JM (1991) Seasonal and annual variability in the diet of California sea lions (Zalophus californianus) at San Nicolas Island California, 1981–1986. Fish Bull 89:331–336

    Google Scholar 

  • Mearns AJ, Young DR, Olson RJ, Schafer HA (1981) Trophic structure and the cesium-potassium ratio in pelagic ecosystems. CalCOFI Rep 22:99–110

    Google Scholar 

  • Michener RH, Schell DM (1994) In: Lajtha K, Michener RH (eds) Stable isotope ratios as tracers in marine aquatic food webs. Stable isotopes in ecology and environmental science. Blackwell, Boston, pp 15–138

    Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise δ15N enrichment along food chains. Further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140

    Article  CAS  Google Scholar 

  • Newsome SD, Martinez del Rio C, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436

    Google Scholar 

  • Newsome SD, Tinker MT, Monson DH, Oftedal OT, Ralls K, Staedler MM, Fogel ML, Estes JA (2009) Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis). Ecology 90(4):961–974

    Article  PubMed  Google Scholar 

  • Palacios DM (2002) Factors influencing the island-mass effect of the Galápagos. Geophys Res Lett 29:49

    Article  Google Scholar 

  • Palacios DM, Bograd SJ, Foley DG, Schwing FB (2006) Oceanographic characteristics of biological hot spots in the North Pacific: a remote sensing perspective. Deep-Sea Res II 53:250–269

    Article  Google Scholar 

  • Pancost RD, Freeman KH, Wakeham SG, Robertson CY (1997) Controls on carbon isotope fractionation by diatoms in the Peru upwelling region. Geochim Cosmochim Acta 61:4983–4991

    Article  CAS  Google Scholar 

  • Pauly D, Trites AW, Capuli E, Christensen V (1998) Diet composition and trophic levels of marine mammals. ICES J Mar Sci 55:467–481

    Article  Google Scholar 

  • Porras-Peters H, Aurioles-Gamboa D, Koch PL (2008) Position, breadth and trophic overlap of sea lions (Zalophus californianus) in the Gulf of California. Mexico. Mar Mammal Sci 24(3):554–576

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position models methods, and assumptions. Ecology 83(3):703–718

    Article  Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montaña CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152(1):179–189

    Article  PubMed  Google Scholar 

  • Rau GH, Takahashi T, Des Marais DJ, Repeta DJ, Martin JH (1992) The relationship between δ13C of organic matter and CO2 in ocean surface water: data from a JGOFS site in the northeast Atlantic Ocean and a model. Geochim Cosmochim Acta 56:141–1413

    Article  Google Scholar 

  • Salazar SK (2005) Variación temporal y espacial del espectro trófico del lobo marino de Galápagos. Dissertation, Instituto Politécnico Nacional, Mexico

  • Scheffer VB (1958) Seals, sea lions and walruses. A review of the pinnipedia. Stanford University Press, Stanford

    Google Scholar 

  • Simmons SE, Crocker DE, Kudela RM, Costa DP (2007) Vocal signaling of male southern elephant seals is honest but imprecise. Anim Behav 73:287–299

    Article  Google Scholar 

  • Slagsvold T, Wiebe KL (2007) Learning the ecological niche. Proc R Soc B 274:19–23

    Article  PubMed  Google Scholar 

  • Soto KH, Trites AW, Arias-Schreiber M (2004) The effects of prey availability on pup mortality and the timing of birth of South American sea lions (Otaria flavescens) in Peru. J Zool 264:419–428

    Article  Google Scholar 

  • Stein JG, Lavenberg RJ (1997) The fishes of the Galapagos Islands. Stanford University Press, Stanford

    Google Scholar 

  • Tieszen LL, Boutton TW, Tesdahl KG, Slade NA (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57:32–37

    Article  Google Scholar 

  • Tollit DJ, Heaslip SG, Deagle BE, Iverson SJ, Joy R, Rosen DA, Trites AW (2006) Estimating diet composition in sea lions: which technique to choose? In: Trites AW, Atkinson S, DeMaster DP, Fritz LW, Gelatt TS, Rea LD, Wynne K (eds) Sea lions of the world. University of Alaska, Fairbanks

    Google Scholar 

  • Trillmich F, Limberger D (1985) Drastic effects of El Niño on Galapagos Pinnipeds. Oecologia 67:19–22

    Article  Google Scholar 

  • Trillmich F, Ono K (1991) The effects of El Niño on pinniped populations in the eastern Pacific. Springer, New York

    Google Scholar 

  • Trillmich F, Wolf JB (2008) Parent-offspring and sibling conflict in Galapagos fur seals and sea lions. Behav Ecol Sociobiol Spec Issue Sibling Conflict Mammals 62:363–375

    Google Scholar 

  • Trites AW, Donnelly CP (2003) The decline of Steller sea lions Eumetopias jubatus in Alaska: a review of the nutritional stress hypothesis. Mammal Rev 33:3–28

    Article  Google Scholar 

  • Trites AW, Miller AJ, Maschner AG, Alexander MA et al (2007) Bottom-up forcing and the decline of Steller sea lions (Eumetopias jubatus) in Alaska: assessing the ocean climate hypothesis. Fish Oceanogr 16(1):46–67

    Article  Google Scholar 

  • Vander Zanden MJ, Rasmussen JB (1999) Primary consumer d13C and d15 N and the trophic position of aquatic consumers. Ecology 80:1395–1404

    Article  Google Scholar 

  • Villegas-Amtmann S, Costa D, Tremblay Y, Aurioles-Gamboa D, Salazar S (2008) Multiple foraging strategies in a marine apex predator, the Galapagos Sea Lion. Mar Ecol Prog Ser 363:299–309

    Article  Google Scholar 

  • Wang CH, Fiedler PC (2006) ENSO variability and the eastern tropical Pacific: a review. Prog Oceanogr 69:239–266

    Article  Google Scholar 

  • Weise MJ, Costa DP (2007) Total body oxygen stores and physiological diving capacity of California sea lions as a function of sex and age. J Exp Biol 210:278–289

    Article  PubMed  Google Scholar 

  • Wolf JB, Trillmich F (2008) Kin in space. Social viscosity in a spatially and genetically sub-structured network. Proc R Soc B 275:2063–2069

    Article  PubMed  Google Scholar 

  • Wolf JB, Mawdsley D, Trillmich F, James R (2007) Social structure in a colonial mammal: unravelling hidden structural layers and their foundations by network analysis. Anim Behav 74(5):1293–1302

    Article  Google Scholar 

  • Wolf JB, Harrod C, Brunner S, Salazar S, Trillmich F, Tautz D (2008) Ecological, morphological and genetic divergence of Galapagos sea lion populations as a model for tracing early stages of species differentiation. BMC Evol Biol 8:150

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Consejo Nacional de Ciencia y Tecnologia (CONACyT), Servicio de Relaciones Exteriores de Mexico (SRE), and CICIMAR of the Instituto Politecnico Nacional for their support in the form of scholarships and laboratory services. We also thank the Parque Nacional Galapagos (PNG) for providing permits for sampling on the islands and for their help in planning the field work. Thanks to Adrian Hurtado, Rodrigo Páez, and Johana Aguilar for their help during the sampling phase. This research was made possible through the financial support provided by CONACYT grant SEP-2004-C01-46806. Thanks to the anonymous reviewers that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Páez-Rosas.

Additional information

Communicated by S. Garthe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Páez-Rosas, D., Aurioles-Gamboa, D. Alimentary niche partitioning in the Galapagos sea lion, Zalophus wollebaeki . Mar Biol 157, 2769–2781 (2010). https://doi.org/10.1007/s00227-010-1535-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1535-0

Keywords

Navigation