Skip to main content

Advertisement

Log in

Feeding ecology and energetics of the Antarctic chaetognaths Eukrohnia hamata, E. bathypelagica and E. bathyantarctica

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Ecological and physiological studies focused on dietary preferences, lipid biochemistry and energetics within the three Antarctic chaetognaths Eukrohnia hamata, E. bathypelagica and E. bathyantarctica from meso- and bathypelagic depths. Eukrohnia hamata and E. bathypelagica respired 0.15 μL O2 mg dry mass (DM)−1 h−1, which translates to an average metabolic loss of only <1.1% of body carbon per day. Lipid storage was not substantial in E. bathypelagica (mean 11.5 ± 6.5% DM) and E. bathyantarctica (mean 15.4 ± 4.1% DM) during summer and winter, suggesting year-round feeding of these predators mainly on copepods. In E. bathypelagica, total fatty acids were dominated by the fatty acids 16:0, 20:5(n-3) and 22:6(n-3) and in E. bathyantarctica also by 18:1(n-9), a fatty acid usually found in storage lipids. Only the latter species was characterized by significant amounts of wax esters, consisting largely of the common fatty alcohols 16:0, 20:1(n-9) and the unusual fatty alcohol isomer 22:1(n-9).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvariño A (1964) Bathymetric distribution of chaetognaths. Pac Sci 18:64–82

    Google Scholar 

  • Alvariño A (1967) The Chaetognatha of the NAGA expedition (1959–1961) in the South China Sea and the Gulf of Thailand. Part 1. Systematics. NAGA Rep 4:1–197

    Google Scholar 

  • Alvariño A (1969) Los Quetognatos del Atlántico. Distribución y notas esenciales de sistemática. Trab Inst Esp Oceanogr 37:1–290

    Google Scholar 

  • Alvariño A (1983) Chaetognatha. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates. Volume I: oogenesis, oviposition and oosorption. Wiley, Chichester, pp 585–610

    Google Scholar 

  • Alvariño A, Hosmer SC, Ford RF (1983a) Antarctic Chaetognatha: United States Antarctic Research Program Eltanin Cruises 8-28, Part 1. Biology of the Antarctic Seas XI. Antarct Res Ser 34:129–338

    Google Scholar 

  • Alvariño A, Verfaillie DF, Ford RF (1983b) Antarctic Chaetognatha: United States Antarctic Research Program Eltanin Cruises 10-23, 25 and 27, Part 2. Biology of the Antarctic Seas XIV. Antarct Res Ser 39:69–204

    Google Scholar 

  • Auel H, Hagen W (2005) Body mass and lipid dynamics of Arctic and Antarctic deep-sea copepods (Calanoidea, Paraeuchaeta): ontogenetic and seasonal trends. Deep Sea Res I 52:1272–1283

    Article  Google Scholar 

  • Baier CT, Purcell JE (1997) Effects of sampling and preservation on apparent feeding by chaetognaths. Mar Ecol Prog Ser 146:37–42

    Article  Google Scholar 

  • Båmstedt U (1979) Seasonal variation in the respiratory rate and ETS activity of deep-water zooplankton from the Swedish West coast. In: Naylor E, Hartnoll RG (eds) Cyclic phenomena in marine plants and animals. Proceedings 13th EMBS, Pergamon Press, Oxford, pp 267–274

  • Bundy MH, Paffenhöfer G-A (1996) Analysis of flow fields associated with freely swimming calanoid copepods. Mar Ecol Prog Ser 133:99–113

    Article  Google Scholar 

  • Casanova J-P (1999) Chaetognatha. In: Boltovskoy D (ed) South Atlantic zooplankton. Backhuys Publishers, Leiden, pp 1353–1374

    Google Scholar 

  • Childress JJ, Thuesen EV (1993) Effects of hydrostatic pressure on metabolic rates of six species of deep-sea gelatinous zooplankton. Limnol Oceanogr 38:665–670

    Article  Google Scholar 

  • Dalsgaard J, St John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment: a review. Adv Mar Biol 46:225–340

    Article  PubMed  Google Scholar 

  • David PM (1955) The distribution of Sagitta gazellae Ritter-Záhony. Discov Rep 27:235–278

    Google Scholar 

  • David PM (1958) The distribution of the Chaetognatha of the Southern Ocean. Discov Rep 29:199–228

    Google Scholar 

  • Falk-Petersen S, Hopkins CCE, Sargent JR (1990) Trophic relationships in the pelagic, Arctic food web. In: Barnes M, Gibson RN (eds) Trophic relationships in the marine environment. Proceedings of the 24th European Marine Symposium, Aberdeen University Press, Aberdeen, pp 315–333

  • Feigenbaum D (1991) Food and feeding behaviour. In: Bone Q, Kapp H, Pierrot-Bults AC (eds) The biology of chaetognaths. Oxford University Press, Oxford, pp 45–54

    Google Scholar 

  • Feigenbaum DL, Maris RC (1984) Feeding in the Chaetognatha. Oceanogr Mar Biol Ann Rev 22:343–392

    Google Scholar 

  • Feigenbaum D, Reeve MR (1977) Prey detection in the Chaetognatha: response to a vibrating probe and experimental determination of attack distance in large aquaria. Limnol Oceanogr 22:1052–1058

    Article  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Froneman PW, Pakhomov EA (1998) Trophic importance of the chaetognaths Eukrohnia hamata and Sagitta gazellae in the pelagic system of the Prince Edward Islands (Southern Ocean). Polar Biol 19:242–249

    Article  Google Scholar 

  • Froneman PW, Pakhomov EA, Perissinotto R, Meaton V (1998) Feeding and predation impact of two chaetognath species, Eukrohnia hamata and Sagitta gazellae, in the vicinity of Marion Island (Southern Ocean). Mar Biol 131:95–101

    Article  Google Scholar 

  • Giesecke R, González HE, Bathmann U (2010) The role of the chaetognath Sagitta gazellae in the vertical carbon flux of the Southern Ocean. Polar Biol 33:293–304

    Article  Google Scholar 

  • Graeve M, Hagen W, Kattner G (1994) Herbivorous or omnivorous? On the significance of lipid compositions as trophic markers in Antarctic copepods. Deep Sea Res I 41:915–924

    Article  Google Scholar 

  • Graeve M, Kattner G, Piepenburg D (1997) Lipids in Arctic benthos: does the fatty acid and alcohol composition reflect feeding and trophic interactions? Polar Biol 18:53–61

    Article  Google Scholar 

  • Grasshoff K (1983) Determination of oxygen. In: Grasshoff K, Ehrhardt M, Kremling K (eds) Methods of seawater analysis. Second, revised and extended edition. Verlag Chemie, Weinheim, pp 61–72

    Google Scholar 

  • Hagen W (1985) On distribution and population structure of Antarctic Chaetognatha. Meeresforsch 30:280–291

    Google Scholar 

  • Hagen W (1999) Reproductive strategies and energetic adaptations of polar zooplankton. Invert Rep Dev 36:25–34

    Google Scholar 

  • Hagen W (2000) Lipids. In: Harris RP, Wiebe PH, Lenz J, Skjoldal HR, Huntley M (eds) ICES zooplankton methodological manual. Academic Press, San Diego, pp 113–119

    Google Scholar 

  • Hagen W, Kattner G, Graeve M (1993) Calanoides acutus and Calanus propinquus, Antarctic copepods with different lipid storage modes via wax esters or triacylglycerols. Mar Ecol Prog Ser 97:135–142

    Article  CAS  Google Scholar 

  • Hagen W, Kattner G, Graeve M (1995) On the lipid biochemistry of polar copepods: compositional differences in the Antarctic calanoids Euchaeta antarctica and Euchirella rostromagna. Mar Biol 123:451–457

    Article  CAS  Google Scholar 

  • Hopkins TL (1985) Food web of an Antarctic midwater ecosystem. Mar Biol 89:197–212

    Article  Google Scholar 

  • Hopkins TL (1987) Midwater food web in McMurdo Sound, Ross Sea, Antarctica. Mar Biol 96:93–106

    Article  Google Scholar 

  • Hopkins TL, Torres JJ (1989) Midwater food web in the vicinity of a marginal ice zone in the western Weddell Sea. Deep Sea Res 36:543–560

    Article  Google Scholar 

  • Hosie GW, Cochran TG (1994) Mesoscale distribution patterns of macrozooplankton communities in Prydz Bay, Antarctica—January to February 1991. Mar Ecol Prog Ser 106:21–39

    Article  Google Scholar 

  • Ikeda T, Kirkwood R (1989) Metabolism and elemental composition of a giant chaetognath Sagitta gazellae from the Southern Ocean. Mar Biol 100:261–267

    Article  CAS  Google Scholar 

  • Ikeda T, Mitchell AW (1982) Oxygen uptake, ammonia excretion and phosphate excretion by krill and other Antarctic zooplankton in relation to their body size and chemical composition. Mar Biol 71:283–298

    Article  Google Scholar 

  • Ikeda T, Torres JJ, Hernández-León S, Geiger SP (2000) Metabolism. In: Harris RP, Wiebe PH, Lenz J, Skjoldal HR, Huntley M (eds) ICES zooplankton methodological manual. Academic Press, San Diego, pp 455–532

    Chapter  Google Scholar 

  • Jiang H, Osborn TR (2004) Hydrodynamics of copepods: a review. Surv Geophys 25:339–370

    Article  Google Scholar 

  • Johnson TB, Terazaki M (2004) Chaetognath ecology in relation to hydrographic conditions in the Australian sector of the Antarctic Ocean. Polar Biosci 17:1–15

    Google Scholar 

  • Kapp H (1991) Some aspects of buoyancy adaptations of chaetognaths. Helgoländer Meeresunters 45:263–267

    Article  Google Scholar 

  • Kapp H (2004) Chaetognatha oder Pfeilwürmer—Leben und Entwicklung im Pelagial. Natur und Museum—Bericht der Senckenbergischen Naturforschenden Gesellschaft 134:398–406

  • Kattner G, Fricke HSG (1986) Simple gas-liquid chromatographic method for the simultaneous determination of fatty acids and alcohols in wax esters of marine organisms. J Chromatogr 361:263–268

    Article  CAS  Google Scholar 

  • Kattner G, Hagen W (1995) Polar herbivorous copepods—different pathways in lipid biosynthesis. ICES J Mar Sci 52:329–335

    Article  Google Scholar 

  • Kattner G, Graeve M, Hagen W (1994) Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Mar Biol 118:637–644

    Article  CAS  Google Scholar 

  • Kruse S (2009) Population structure and reproduction of Eukrohnia bathyantarctica and Eukrohnia bathypelagica in the Lazarev Sea, Southern Ocean. Polar Biol 32:1377–1387. doi:10.1007/s00300-009-0633-2

    Article  Google Scholar 

  • Kruse S, Bathmann U, Brey T (2009) Meso- and bathypelagic distribution and abundance of chaetognaths in the Atlantic sector of the Southern Ocean. Polar Biol 32:1359–1376. doi:10.1007/s00300-009-0632-3

    Article  Google Scholar 

  • Kruse S, Brey T, Bathmann U (submitted) The role of midwater chaetognaths in Southern Ocean pelagic energy flow. Mar Ecol Prog Ser

  • Lancraft TM, Hopkins TL, Torres JJ, Donnelly J (1991) Oceanic micronektonic/macrozooplanktonic community structure and feeding in ice covered Antarctic waters during the winter (AMERIEZ 1988). Polar Biol 11:157–167

    Article  Google Scholar 

  • Lee RF, Hirota J (1973) Wax esters in tropical zooplankton and nekton and the geographical distribution of wax esters in marine copepods. Limnol Oceanogr 18:227–239

    Article  CAS  Google Scholar 

  • Lee RF, Hirota J, Barnett AM (1971a) Distribution and importance of wax esters in marine copepods and other zooplankton. Deep Sea Res 18:1147–1165

    CAS  Google Scholar 

  • Lee RF, Nevenzel JC, Paffenhöfer G-A (1971b) Importance of wax esters and other lipids in the marine food chain: phytoplankton and copepods. Mar Biol 9:99–108

    Article  CAS  Google Scholar 

  • Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306

    Article  CAS  Google Scholar 

  • Meyer B (2005) German contribution to SO-GLOBEC: Lazarev Sea Krill Study (LAKRIS). GLOBEC Int Newsl 11(1):46–47

    Google Scholar 

  • Newbury TK (1972) Vibration perception by chaetognaths. Nature 236:459–460

    Article  Google Scholar 

  • Omori M (1969) Weight and chemical composition of some important oceanic zooplankton in the North Pacific Ocean. Mar Biol 3:4–10

    Article  CAS  Google Scholar 

  • Øresland V (1987) Feeding of the chaetognaths Sagitta elegans and S. setosa at different seasons in Gullmarsfjorden, Sweden. Mar Ecol Prog Ser 39:69–79

    Article  Google Scholar 

  • Øresland V (1990) Feeding and predation impact of the chaetognath Eukrohnia hamata in Gerlache Strait, Antarctic Peninsula. Mar Ecol Prog Ser 63:201–209

    Article  Google Scholar 

  • Øresland V (1995) Winter population structure and feeding of the chaetognath Eukrohnia hamata and the copepod Euchaeta antarctica in Gerlache Strait, Antarctic Peninsula. Mar Ecol Prog Ser 119:77–86

    Article  Google Scholar 

  • Pakhomov EA, Perissinotto R, Froneman PW (1999) Predation impact of carnivorous macrozooplankton and micronekton in the Atlantic sector of the Southern Ocean. J Mar Syst 19:47–64

    Article  Google Scholar 

  • Pakhomov EA, Perissinotto R, McQuaid CD, Froneman PW (2000) Zooplankton structure and grazing in the Atlantic sector of the Southern Ocean in late austral summer 1993. Part 1. Ecological zonation. Deep Sea Res I 47:1663–1686

    Article  Google Scholar 

  • Pearre S Jr (1981) Feeding by Chaetognatha: energy balance and importance of various components of the diet of Sagitta elegans. Mar Ecol Prog Ser 5:45–54

    Article  Google Scholar 

  • Reeve MR (1964) Feeding of zooplankton, with special reference to some experiments with Sagitta. Nature 201:211–213

    Article  Google Scholar 

  • Sameoto DD (1987) Vertical distribution and ecological significance of chaetognaths in the Arctic environment of Baffin Bay. Polar Biol 7:317–328

    Article  Google Scholar 

  • Schnack-Schiel SB, Hagen W (1994) Life cycle strategies and seasonal variations in distribution and population structure of four dominant calanoid copepod species in the eastern Weddell Sea, Antarctica. J Plankton Res 16:1543–1566

    Article  Google Scholar 

  • Schneider G (1990) Phosphorus content of marine zooplankton dry material and some consequences; a short review. Plankton Newsl 12:41–44

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry. The principles and practice of statistics in biological research, 2nd edn. WH Freeman and company, San Francisco

    Google Scholar 

  • Terazaki M (1991) Deep sea chaetognaths. In: Bone Q, Kapp H, Pierrot-Bults AC (eds) The biology of chaetognaths. Oxford University Press, Oxford, pp 117–121

    Google Scholar 

  • Terazaki M (1993) Deep-sea adaptation of the epipelagic chaetognath Sagitta elegans in the Japan Sea. Mar Ecol Prog Ser 98:79–88

    Article  Google Scholar 

  • Terazaki M, Marumo R, Fujita Y (1977) Pigments of meso- and bathypelagic chaetognaths. Mar Biol 41:119–125

    Article  CAS  Google Scholar 

  • Thuesen EV, Childress JJ (1993) Enzymatic activities and metabolic rates of pelagic chaetognaths: lack of depth-related declines. Limnol Oceanogr 38:935–948

    Article  CAS  Google Scholar 

  • von Ritter-Záhony R (1911) Revision der Chätognathen. Dt Südpol-Exped 13:1–71

    Google Scholar 

  • Wimpenny RS (1936) The distribution, breeding and feeding of some important plankton organisms of the south-west North Sea in 1934. I. Calanus finmarchicus (Gunn), Sagitta setosa (J. Müller), and Sagitta elegans (Verrill). Fish Invest Lond Ser 2 15:1–53

    Google Scholar 

Download references

Acknowledgments

We are grateful to the captains and the crew of RV “Polarstern” for their professional support during ANT 23-6 and ANT 24-2. We also thank Petra Wencke for analyzing the lipids and fatty acids during this study and Martin Graeve for fatty acid confirmation by GC–MS. Helpful and constructive comments on the manuscript by Gerhard Kattner, Martin Graeve and three anonymous reviewers are highly appreciated. This publication is part of the doctoral thesis of Svenja Kruse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svenja Kruse.

Additional information

Communicated by S. A. Poulet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruse, S., Hagen, W. & Bathmann, U. Feeding ecology and energetics of the Antarctic chaetognaths Eukrohnia hamata, E. bathypelagica and E. bathyantarctica . Mar Biol 157, 2289–2302 (2010). https://doi.org/10.1007/s00227-010-1496-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1496-3

Keywords

Navigation