Skip to main content

Advertisement

Log in

Variation in size of living articulated brachiopods with latitude and depth

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Geographical variations in animal characters are one of the main subjects for study in macroecology. Variation with latitude has received special interest. Articulated brachiopods are possibly the commonest macrofossil with large variations in size of taxa through the fossil record. Here, we investigate trends in size of the 3 main orders of articulated brachiopod with latitude and depth. Data were insufficient to identify patterns in Thecideida (a micromorph taxon only recorded from low latitudes). Rhynchonellida had no clear trends in size with latitude or depth. Terebratulida exhibited hemispheric differences in size relations, with increasing length of species towards the pole in the south and no significant trend in the north. Tropical species were small (<20 mm length between 10°N and 10°S), and the largest species were found between 30° and 60° latitude in both hemispheres. There were no articulated brachiopods recorded from the high arctic, and support for a continuous trend in size with latitude was small or absent. In Terebratulida, there was a significant decrease in species length with depth of 1.7 mm per 100 m depth increase. These trends could be explained by competition for space and reduced availability of habitat with progressive depth beyond the continental shelf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angilletta MJ Jr (2004) Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr Comp Biol 44:498–509

    Article  Google Scholar 

  • Asgaard U, Bromley RG (1991) Colonisation by micromorph brachiopods in the shallow subtidal of the eastern Mediterranean Sea. In: MacKinnon DI, Lee DE, Campbell JD (eds) Brachiopods through time. A.A. Balkema, Rotterdam, pp 261–264

    Google Scholar 

  • Asgaard U, Stentoft N (1984) Micromorph brachiopods from Barbados: palaeoecological and evolutionary implications. Geobios Memoire Special 8:29–37

    Article  Google Scholar 

  • Ashton KG (2004) Sensitivity of intraspecific latitudinal clines of body size for tetrapods to sampling, latitude and body size. Integr Comp Biol 44:403–412

    Article  Google Scholar 

  • Baker PG (2006) Thecideida. In: Kaesler RL (ed) Treatise on Invertebrate Paleontology, Part H Brachiopoda, Revised, vol 5. The Geological Society of America and The University of Kansas, Boulder & Lawrence, pp 1938–1964

    Google Scholar 

  • Bergmann C (1847) Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 3(1):595–708

    Google Scholar 

  • Berrigan D, Charnov EL (1994) Reaction norms for age and size at maturity in response to temperature: a puzzle for life historians. Oikos 70:474–478

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage V, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Chapelle G, Peck LS (1999) Polar gigantism dictated by oxygen availability. Nature 399:114–115

    Article  CAS  Google Scholar 

  • Chapelle G, Peck LS (2004) Amphipod crustacean size spectra: new insights in the relationship between size and oxygen. Oikos 106:167–175

    Article  Google Scholar 

  • Chown SL, Gaston KJ (2009) Body size variation in insects: a macroecological perspective. Biol Rev. doi:10.1111/j.1469-185X.2009.00097.x

  • Chown SL, Sinclair BJ, Leinaas HP, Gaston KJ (2004) Hemispheric Asymmetries in Biodiversity—A Serious Matter for Ecology. PLoS Biol 2(11):e406. doi:10.1371/journal.pbio.0020406

  • Cooper GA (1973) New Brachiopoda from the Indian Ocean. Smithson Contrib Paleobiol 17:1–51

    Google Scholar 

  • Cooper GA (1981) Brachiopoda from the Southern Indian Ocean (recent). Smithson Contrib Paleobiol 43:1–93

    Google Scholar 

  • Curry GB, Peck LS, Ansell AD, James M (1989) Physiological constraints on living and fossil brachiopods. Trans R Soc Edinb Earth Sci 80:255–262

    Google Scholar 

  • Forsterra G, Hausserman V, Lüter C (2008) Mass occurrence of the recent brachiopod Magellania venosa (Terebratellidae) in the fiords Comau and Renihue, Northern Patagonia, Chile. Mar Ecol Evol Perspect 29:342–347

    Google Scholar 

  • Gaston KJ, Blackburn TM (2000) Pattern and process in macroecology. Blackwell Science, Oxford

    Book  Google Scholar 

  • Geist V (1987) Bergmann’s rule is invalid. Can J Zool 65(4):1035–1038

    Article  Google Scholar 

  • Hedley C (1899) Mollusca of Funafuti, part 2, Pelecypoda and Brachiopoda. Memoirs Austr Museum 3:508–510

    Google Scholar 

  • Ho CK, Pennings SC, Carefoot TH (2010) Is diet quality an overlooked mechanism for Bergmann’s rule? Am Nat 175:269–276

    Article  PubMed  Google Scholar 

  • Jablonski D (1996) Body size and macroevolution. In: Jablonski D, Erwin DH, Lipps J (eds) Evolutionary paleobiology. University of Chicago Press, Chicago, pp 256–289

    Google Scholar 

  • James MA, Ansell AD, Collins MJ, Curry GB, Peck LS, Rhodes MC (1992) Recent advances in the study of living brachiopods. Adv Mar Biol Rev 28:175–387

    Article  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Article  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeog 31:713–732

    Article  Google Scholar 

  • La Perna R (2005) A gigantic deep-sea Nucinellidae from the tropical West Pacific (Bivalvia : Protobranchia). Zootaxa 881:1–10

    Google Scholar 

  • Laurin B (1997) Brachiopodes récoltées dans les eaux de la Nouvelle-Calédonie et des îles Loyauté, Matthew et Chesterfield. In: Crosnier A (ed) Résultats des campagnes MUSORSTOM, vol 18. Mémoires Museum Natl Hist Nat 176:411–471

  • Lee DE, Smirnova TN, Dong-Li S (2006) Terebratulida. In: Kaesler RL (ed) Treatise on Invertebrate Paleontology, Part H Brachiopoda, Revised, Volume 5. The Geological Society of America and The University of Kansas, Boulder & Lawrence, pp 1965–2250

    Google Scholar 

  • Ma X, Lu X, Meril J (2009) Altitudinal decline of body size in a Tibetan frog. J Zool 279:364–371

    Article  Google Scholar 

  • Mahon AR, Amsler CD, McClintock JB, Amsler AO, Baker BJ (2003) Tissue-specific palatability and chemical defenses against macropredators and pathogens in the common articulate brachiopod Liothyrella uva from the Antarctic Peninsula. J Exp Mar Biol Ecol 290:197–210

    Article  CAS  Google Scholar 

  • McClain CR, Rex MA (2001) The relationship between dissolved oxygen concentration and maximum size in deep-sea turrid gastropods: an application of quantile regression. Mar Biol 139:681–685

    Article  Google Scholar 

  • McClain CR, Boyer AG, Rosenberg G (2006) The island rule and the evolution of body size in the deep sea. J Biogeog 33:1578–1584

    Article  Google Scholar 

  • McClintock JB, Slattery M, Thayer CW (1993) Energy content and chemical defence of the articulate brachiopod Liothyrella uva (Jackson, 1912) from the Antarctic Peninsula. J Exp Mar Biol Ecol 169:103–116

    Article  CAS  Google Scholar 

  • Novack-Gottshall PM (2008) Ecosystem-wide body-size trends in Cambrian-Devonian marine invertebrate lineages. Paleobiology 34:210–228

    Article  Google Scholar 

  • Nylin S, Svärd L (1991) Latitudinal patterns in the size of European butterflies. Holarctic Ecology 14:192–202

    Google Scholar 

  • Partridge L, French V (1996) Thermal evolution of ectotherm body size: why get big in the cold? In: Johnston IA, Bennet AF (eds) Animals and temperature: phenotypic and evolutionary adaptation. Cambridge University Press, Cambridge, pp 265–292

    Chapter  Google Scholar 

  • Peck LS (1993) The tissues of articulate brachiopods and their value to predators. Philos Trans R Soc Lond B 339:17–32

    Article  Google Scholar 

  • Peck LS (1996) Feeding and metabolism in the Antarctic brachiopod Liothyrella uva: a low energy lifestyle species with restricted metabolic scope. Proc R Soc Lond B 263:223–228

    Article  CAS  Google Scholar 

  • Peck LS (2001) Ecology. Chapter 11. In: Carlson S, Sandy M (eds) Brachiopods ancient and modern: a tribute to G. Arthur Cooper. The Paleontology Society of the USA & the University of Kansas, USA, pp 171–183

    Google Scholar 

  • Peck LS (2008) Brachiopods and climate change. Earth Environ Sci Trans R Soc Edinburgh 98:451–456

    Google Scholar 

  • Peck LS, Chapelle G (2003) Reduced oxygen at high altitude limits maximum size. Proc R Soc Lond BL 270:S166–S167

    Article  Google Scholar 

  • Peck LS, Maddrell SHP (2005) The limitation of size by oxygen in the fruit fly Drosophila melanogaster. J Exp Zool 303A:968–975

    Article  Google Scholar 

  • Peck LS, Robinson K (1994) Pelagic larval development in the brooding Antarctic brachiopod Liothyrella uva. Mar Biol 120:279–286

    Article  Google Scholar 

  • Peck LS, Brockington S, Brey T (1997) Growth and metabolism in the Antarctic brachiopod Liothyrella uva. Philos Trans R Soc Lond Ser B 352:851–858

    Article  Google Scholar 

  • Peck LS, Meidlinger K, Tyler PA (2001) Developmental and settlement characteristics of the Antarctic brachiopod Liothyrella uva (Broderip 1833). In: Brunton CHC, Cocks LR, Long SL (eds) Brachiopods past and present. The systematic association special volume series 63, London, pp 80–90

  • Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109

    Article  PubMed  Google Scholar 

  • Rex MA, Etter RJ (2009) Deep-sea biodiversity: pattern and scale. Harvard University Press, London, 332 pp

  • Rex MA, Etter RJ, Clain AJ, Hill MS (1999) Bathymetric patterns of body size in deep-sea gastropods. Evolution 53:1298–1301

    Article  Google Scholar 

  • Rudwick MJ (1970) Living and fossil brachiopods. Hutchinson University Library, London

  • Savage NM, Manceñido MO, Owen EF, Carlson SJ, Grant RE, Dagys AS, Sun DL (2002) Rhynchonellida, 1027–1376. In: Kaesler RL (ed) Treatise on invertebrate paleontology. Part H. Brachiopoda 4 (revised). Geological Society of America, Boulder, CO, and University of Kansas Press, Lawrence, KS, 753 pp

  • Schutze MK, Clarke AR (2008) Converse Bergmann cline in a Eucalyptus herbivore, Paropsis atomaria Olivier (Coleoptera: Chrysomelidae): phenotypic plasticity or local adaptation? Glob Ecol Biogeogr 17:424–431

    Article  Google Scholar 

  • Sinclair BJ, Addo-Bediako A, Chown SL (2003) Climatic variability and the evolution of insect freeze tolerance. Biol Rev 78:181–195

    Article  PubMed  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Thayer CW, Allmon RA (1991) Unpalatable thecideid brachiopods from Palau—ecological and evolutionary implications. In: MacKinnon DI, Lee DE, Campbell JD (eds) Brachiopods through time. A.A. Balkema, Rotterdam, pp 253–260

    Google Scholar 

  • Tietjen JH (1989) Ecology of deep-sea nematodes from the Puerto Rico Trench area and Hatteras Abyssal Plain. Deep- Sea Res 36:1579–1594

    Article  Google Scholar 

  • Van der Have TM, de Jong G (1996) Adult size in ectotherms: temperature effects on growth and differentiation. J Theor Biol 183:329–340

    Article  Google Scholar 

  • White EP, Ernest SKM, Kerkhoff AJ, Enquist BJ (2007) Relationships between body size and abundance in ecology. TREE 22:323–330

    PubMed  Google Scholar 

  • Wiencke C, Bartsch I, Bischoff B, Peters AF, Breeman AM (1994) Temperature requirements and biogeography of Antarctic, Arctic and Amphiequatorial seaweeds. Bot Mar 37:247–259

    Article  Google Scholar 

  • Woods HA (1999) Egg-mass size and cell size: effects of temperature on oxygen distribution. Am Zool 39:244–252

    Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge, 174 p

  • Zezina ON (2008) Biogeography of the Recent Brachiopods. Paleontol J 42:830–858

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ian Loch for loan of Australian Museum specimens and NIWA for the loan of specimens from cruises and sites around New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Peck.

Additional information

Communicated by X. Irigoien.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 624 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peck, L.S., Harper, E.M. Variation in size of living articulated brachiopods with latitude and depth. Mar Biol 157, 2205–2213 (2010). https://doi.org/10.1007/s00227-010-1486-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1486-5

Keywords

Navigation