Skip to main content
Log in

Attachment of oysters to natural substrata by biologically induced marine carbonate cement

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Oysters live permanently immobilised by cementation of the left valve to a hard substrate. The contact zone between oysters and natural substrata has been analysed using SEM imaging, electron dispersive X-ray microanalysis, electron backscatter diffraction and Raman spectroscopy and reveals the influence of both biogenic and non-biogenic processes in oyster cementation. Original adhesion is brought about by secretion of an organic component that acts as a nucleating surface onto which crystals precipitate. These crystals have a random orientation and are composed of high Mg calcite. This suggests that the crystals nucleating on the glue substrate are outwith the biological control experienced by the shell biomineralisation process and are formed by inorganic precipitation from seawater. It is proposed that oysters do not control or secrete crystalline cement. Instead, they adhere by secretion of an organic film onto which crystals precipitate from seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bathurst RGC (1975) Carbonate cements and their diagenesis. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  • Bischoff WD, Bishop FC, Mackenzie FT (1983) Biogenically produced magnesian calcite inhomogeneities in chemical and physical—properties comparison with synthetic phases. Am Mineral 68:1183–1188

    CAS  Google Scholar 

  • Bischoff WD, Sharma SK, Mackenzie FT (1985) Carbonate ion disorder in synthetic and biogenic magnesian calcites—a Raman spectral study. Am Mineral 70:581–589

    CAS  Google Scholar 

  • Bogan A, Bouchet P (1998) Cementation in the freshwater bivalve family Corbiculidae (Mollusca: Bivalvia): a new genus and species from Lake Poso, Indonesia. Hydrobiologia 389:131–139

    Article  Google Scholar 

  • Braithwaite CJR, Taylor JD, Glover EA (2000) Marine carbonate cements, biofilms, biomineralization, and skeletogenesis: some bivalves do it all. J Sediment Res 70:1129–1138

    Article  CAS  Google Scholar 

  • Bromley RG, Heinberg C (2006) Attachment strategies of organisms on hard substrates: a palaeontological view. Palaeogeogr Palaeocl 232:429–453

    Article  Google Scholar 

  • Burton EA, Walter LM (1987) Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control? Geology 15:111–114

    Article  CAS  Google Scholar 

  • Carriker MR, Palmer RE, Prezant RS (1980) Functional ultra morphology of the dissoconch valves of the oyster Crassostrea virginica. Proc Natn Shellfish Ass 70:139–183

    Google Scholar 

  • Chave KE, Suess E (1970) Calcium carbonate saturation in seawater: effects of dissolved organic matter. Limnol Oceanogr 15:633–637

    Article  CAS  Google Scholar 

  • Checa AG, Rodriguez-Navarro AB, Delgado FJE, Esteban-Delgado FJ (2005) The nature and formation of calcitic columnar prismatic shell layers in pteriomorphian bivalves. Biomaterials 26:6404–6414

    Article  CAS  PubMed  Google Scholar 

  • Checa AG, Esteban-Delgado FJ, Ramirez-Rico J, Rodriguez-Navarro AB (2009) Crystallographic reorganization of the calcitic prismatic layer of oysters. J Struct Biol 167:261–270

    Article  CAS  PubMed  Google Scholar 

  • Cranfield HJ (1973a) Observations on function of glands of foot of pediveliger of Ostrea edulis during settlement. Mar Biol 22:211–223

    Article  Google Scholar 

  • Cranfield HJ (1973b) Observations on the behaviour of pediveliger of Ostrea edulis during attachment and cementing. Mar Biol 22:203–209

    Article  Google Scholar 

  • Cranfield HJ (1973c) Study of morphology, ultrastructure and histochemistry of foot of pediveliger of Ostrea edulis. Mar Biol 22:187–202

    Article  Google Scholar 

  • Cranfield HJ (1974) Observations on the morphology of the mantle folds of the pediveliger of Ostrea Edulis and their function during settlement. J Mar Biol Ass UK 54:1–12

    Article  CAS  Google Scholar 

  • Cranfield HJ (1975) The ultrastructure and histochemistry of the larval cement of Ostrea edulis. J Mar Biol Ass UK 55:497–503

    Article  Google Scholar 

  • Cusack M, Pérez-Huerta A, Dalbeck P (2007) Common crystallographic control in calcite biomineralization of bivalved shells. CrystEngComm 9:1215–1218

    Article  CAS  Google Scholar 

  • Cusack M, Parkinson D, Freer A, Pérez-Huerta A, Fallick AE, Curry GB (2008) Oxygen isotope composition in Modiolus modiolus aragonite in the context of biological and crystallographic control. Mineral Mag 72:569–577

    Article  CAS  Google Scholar 

  • Dalbeck P, Cusack M (2006) Crystallography (electron backscatter diffraction) and chemistry (electron probe microanalysis) of the avian eggshell. Cryst Growth Des 6:2558–2562

    Article  CAS  Google Scholar 

  • De Bruyne NA (1962) The action of adhesives. Sci Am 206:114–126

    Article  Google Scholar 

  • Eltzholtz JR, Birkedal H (2009) Architecture of the biomineralized byssus of the saddle oyster (Anomia sp.). J Adhes 85:590–600

    Article  CAS  Google Scholar 

  • Esteban-Delgado FJ, Harper EM, Checa AG, Rodriguez-Navarro AB (2008) Origin and expansion of foliated microstructure in pteriomorph bivalves. Biol Bull 214:153–165

    Article  PubMed  Google Scholar 

  • Friedman GM (1998) Rapidity of marine carbonate cementation—implications for carbonate diagenesis and sequence stratigraphy: perspective. Sediment Geol 119:1–4

    Article  CAS  Google Scholar 

  • Galtsoff PS (1964) The American Oyster Crassostrea Virginica Gmelin. Government Printing office, Washington

    Google Scholar 

  • Gillet P, Biellmann C, Reynard B, McMillan P (1993) Raman spectroscopic studies of carbonates. 1. High pressure and high temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys Chem Miner 20:1–18

    CAS  Google Scholar 

  • Harper EM (1991) The role of predation in the evolution of cementation in bivalves. Palaeontology 34:455–460

    Google Scholar 

  • Harper EM (1992) Postlarval cementation in the Ostreidae and its implications for other cementing Bivalvia. J Mollusc Stud 58:37–47

    Article  Google Scholar 

  • Harper EM (1997) Attachment of mature oysters (Saccostrea cucullata) to natural substrata. Mar Biol 127:449–453

    Article  Google Scholar 

  • Harper EM, Morton B (2000) The biology and functional morphology of Myochama anomioides Stutchbury, 1830 (Bivalvia: Anomalodesmata: Pandoroidea), with reference to cementation. J Mollusc Stud 66:403–416

    Article  Google Scholar 

  • Hillgartner H, Dupraz C, Hug W (2001) Microbially induced cementation of carbonate sands: are micritic meniscus cements good indicators of vadose diagenesis? Sedimentology 48:117–131

    Article  Google Scholar 

  • Lecuyer C, Reynard B, Martineaua F (2004) Stable isotope fractionation between mollusc shells and marine waters from Martinique Island. Chem Geol 213:293–305

    Article  CAS  Google Scholar 

  • Li Y-H, Takahashi T, Broecker WS (1969) Degree of saturation of CaCO3 in the oceans. J Geophys Res 74:5507–5525

    Article  CAS  Google Scholar 

  • MacDonald J, Freer A, Cusack M (2010) Alignment of crystallographic c-axis throughout the four distinct microstructural layers of the oyster Crassostrea gigas. Cryst Growth Des 10:1243–1246

    Article  CAS  Google Scholar 

  • Mitterer RM (1971) Influence of natural organic matter on CaCO3 precipitation. In: Bricker OP (ed) Carbonate cements. Studies in geology 19. The John Hopkins Press, Baltimore, pp 252–258

    Google Scholar 

  • Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elsevier, Amsterdam

    Google Scholar 

  • Morton B, Harper EM (2001) Cementation in Cleidothaerus albidus (Lamarck, 1819) (Bivalvia: Anomalodesmata: Pandoroidea). Molluscan Res 21:1–15

    Google Scholar 

  • Perez FR, Martinez-Frias J (2003) Identification of calcite grains in the Vaca Muerta mesosiderite by Raman spectroscopy. J Raman Spectrosc 34:367–370

    Article  CAS  Google Scholar 

  • Pérez-Huerta A, Cusack M (2009) Optimizing electron backscatter diffraction of carbonate biominerals-resin type and carbon coating. Microsc Microanal 15:197–203

    Article  PubMed  Google Scholar 

  • Pope MC, Grotzinger JP, Schreiber BC (2000) Evaporitic subtidal stromatolites produced by in situ precipitation: textures, facies associations, and temporal significance. J Sediment Res 70:1139–1151

    Article  CAS  Google Scholar 

  • Stenzel HB (1971) Oysters. In: Moore R (ed) Treatise of invertebrate paleontology. Part N. Mollusca. 6. Bivalvia, vol 3. Geological Association of America, pp N953–N1224

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific Publications, Oxford

    Book  Google Scholar 

  • Urmos J, Sharma SK, Mackenzie FT (1991) Characterisation of some biogenic carbonates with Raman spectroscopy. Am Mineral 76:641–646

    CAS  Google Scholar 

  • Weiner S, Addadi L, Wagner HD (2000) Materials design in biology. Mater Sci Eng 11:1–8

    Article  Google Scholar 

  • Yamaguchi K (1993) Shell structure and behaviour related to cementation in oysters. Mar Biol 118:89–100

    Article  Google Scholar 

  • Yonge CM (1979) Cementation in bivalves. In: van der Spoel S, van Bruggen C, Lever J (eds) Pathways in malacology. Scheltema and Holkema, Utrecht, pp 83–106

    Google Scholar 

Download references

Acknowledgments

Research is funded by a BBSRC DTA award which is gratefully acknowledged. We also thank Peter Chung for his assistance with SEM and EBSD analysis as well as John Gilleece and Nick Kamenos for assistance with sample preparation. Finally, many thanks to Colin Braithwaite for his assistance and advice throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne MacDonald.

Additional information

Communicated by F. Bulleri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDonald, J., Freer, A. & Cusack, M. Attachment of oysters to natural substrata by biologically induced marine carbonate cement. Mar Biol 157, 2087–2095 (2010). https://doi.org/10.1007/s00227-010-1476-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1476-7

Keywords

Navigation