Skip to main content
Log in

Are there true cosmopolitan sipunculan worms? A genetic variation study within Phascolosoma perlucens (Sipuncula, Phascolosomatidae)

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Phascolosoma perlucens is one of the most common intertidal sipunculan species and has been considered a circumtropical cosmopolitan taxon due to the presence of a long-lived larva. To verify whether P. perlucens is a true cosmopolitan species or a complex of cryptic forms, we examined the population structure and demographics of 56 putative P. perlucens individuals from 13 localities throughout the tropics. Analysis of two mitochondrial markers, cytochrome c oxidase subunit I and 16S rRNA, suggests high levels of genetic differentiation between distantly located populations of P. perlucens. At least four different lineages identified morphologically as P. perlucens were distinguished. These lineages are likewise supported by phylogenetic analysis of the two mitochondrial markers and by the haplotype network analysis. Our results suggest that P. perlucens is a case of overconservative taxonomy, rejecting the alleged cosmopolitanism of P. perlucens. However, cryptic speciation also exists in some areas, including a possible case of geminate species across the Isthmus of Panama.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addison JA, Hart MW (2005) Colonization, dispersal, and hybridization influence phylogeography of North Atlantic sea urchins (Strongylocentrotus droebachiensis). Evolution 59:532–543

    CAS  Google Scholar 

  • Álvarez-Padilla F, Dimitrov D, Giribet G, Hormiga G (2009) Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data. Cladistics 25:109–146

    Article  Google Scholar 

  • Aron S, Solé-Cava AM (1991) Genetic evaluation of the taxonomic status of 2 varieties of the cosmopolitan ascidian Botryllus niger (Ascidiacea, Botryllidae). Biochem Syst Ecol 19:271–276

    Article  Google Scholar 

  • Augener H (1903) Beitrage zur Kenntnis der Gephyreen nach Untersuchung der im Gottinger zoologischen Museum befindlichen Sipunculiden und Echiuriden. Arch Natarges 69:297–371

    Google Scholar 

  • Baird WB (1868) Monograph of the species of worms belonging to the subclass Gephyrea; with a notice of such species as are contained in the collection of the British Museum. Proc Zool Soc Lond 1868:76–114

    Google Scholar 

  • Baker JM, Funch P, Giribet G (2007) Cryptic speciation in the recently discovered American cycliophoran Symbion americanus; genetic structure and population expansion. Mar Biol 151:2183–2193

    Article  Google Scholar 

  • Bleidorn C, Kruse I, Albrecht S, Bartolomaeus T (2006) Mitochondrial sequence data expose the putative cosmopolitan polychaete Scoloplos armiger (Annelida, Orbiniidae) as a species complex. BMC Evol Biol 6:47

    Article  Google Scholar 

  • Boury-Esnault N, Klautau M, Bezac C, Wulff J, Solé-Cava AM (1999) Comparative study of putative conspecific sponge populations from both sides of the Isthmus of Panama. J Mar Biol Assoc UK 79:39–50

    Article  Google Scholar 

  • Bucklin A, Kocher TD (1996) Source regions for recruitment of Calanus finmarchicus to Georges Bank: Evidence from molecular population genetic analysis of mtDNA. Deep-Sea Res Part II 43:1665–1681

    Article  CAS  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  Google Scholar 

  • Crandall KA (1996) Multiple interspecies transmissions of human and simian T-cell leukemia/lymphoma virus type I sequences. Mol Biol Evol 13:115–130

    Article  CAS  Google Scholar 

  • Cutler EB (1965) Sipunculids of Madagascar. Extrait des cahiers ORSTOM-Oceanographie 3:51–63

    Google Scholar 

  • Cutler EB (1994) The sipuncula: their systematics, biology and evolution. Cornell University Press, Ithaca, N.Y. 453 p

    Google Scholar 

  • Cutler EB, Cutler NJ (1979) Madagascar and Indian Ocean Sipuncula. Bull Mus Natl Hist Nat, Paris 4e:941–990

    Google Scholar 

  • Cutler EB, Cutler NJ (1990) A revision of the subgenus Phascolosoma (Sipuncula: Phascolosoma). Proc Biol Soc Wash 103:691–730

    Google Scholar 

  • Cutler EB, Kirsteuer E (1968) Additional notes on some sipuncula from Madagascar. Results Australian Indo-West Pacific expedition, 1959–60. Part 12. Zool Anz 180:352–356

    Google Scholar 

  • Cutler EB, Cutler NJ, Nishikawa T (1984) The sipuncula of Japan: their systematics and distribution. Publ Seto Mar Biol Lab 29:249–322

    Google Scholar 

  • De Laet JE (2005) Parsimony and the problem of inapplicables in sequence data. In: Albert VA (ed) Parsimony, phylogeny and genomics. Oxford University Press, Oxford, pp 81–116

    Google Scholar 

  • Du X, Chen Z, Deng Y, Wang Q, Huang R (2008) Genetic diversity and population structure of the peanut worm (Sipunculus nudus) in Southern China as inferred from mitochondrial 16S rRNA sequences. Isr J Aquacul-Bamid 60:237–242

    Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:1–19

    Article  Google Scholar 

  • Edmonds SJ (1980) A revision of the systematics of Australian sipunculans (sipuncula). Rec S Aust Mus 18:1–74

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Farris JS (1997) The future of phylogeny reconstruction. Zool Scr 26:303–311

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fischer W (1922) Westindische Gephyreen. Zool Anz 55:10–18

    Google Scholar 

  • Fisher WK (1952) The sipunculid worms of California and Baja California. Proc US Nat Mus 102:371–450

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek RC (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mar Biol Biothechnol 3:294–299

    CAS  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  Google Scholar 

  • Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423

    Article  Google Scholar 

  • Goloboff PA (1999) Analyzing large data sets in reasonable times: Solutions for composite optima. Cladistics 15:415–428

    Article  Google Scholar 

  • Huber BA, Astrin JJ (2009) Increased sampling blurs morphological and molecular species limits: revision of the Hispaniolan endemic spider genus Tainonia (Araneae: Pholcidae). Invertebr Syst 23:281–300

    Article  Google Scholar 

  • Jolly MT, Jollivet D, Gentil F, Thiebaut E, Viard F (2005) Sharp genetic break between Atlantic and English Channel populations of the polychaete Pectinaria koreni, along the North coast of France. Heredity 94:23–32

    Article  CAS  Google Scholar 

  • Klautau M, Russo CAM, Lazoski C, Boury-Esnault N, Thorpe JP, Solé-Cava AM (1999) Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution 53:1414–1422

    Article  Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216

    Article  Google Scholar 

  • Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420:73–90

    Article  CAS  Google Scholar 

  • Lanchester WF (1905) On the sipunculids and echiurids collected during the “Skeat” expedition to the Malay Peninsula. Proc Zool Soc Lond 1:35–41

    Google Scholar 

  • Lessios HA, Kessing BD, Pearse JS (2001) Population structure and speciation in tropical seas: Global phylogeography of the sea urchin Diadema. Evolution 55:955–975

    Article  CAS  Google Scholar 

  • Marko PB (2002) Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama. Mol Biol Evol 19:2005–2021

    Article  CAS  Google Scholar 

  • Mayr E, Ashlock PD (1991) Principles of systematic zoology. Mcgraw-Hill, New York, p 428

    Google Scholar 

  • McFadden CS, Grosberg RK, Cameron BB, Karlton DP, Secord D (1997) Genetic relationships within and between clonal and solitary forms of the sea anemone Anthopleura elegantissima revisited: Evidence for the existence of two species. Mar Biol 128:127–139

    Article  Google Scholar 

  • McGovern TM, Hellberg ME (2003) Cryptic species, cryptic endosymbionts, and geographical variation in chemical defences in the bryozoan Bugula neritina. Mol Ecol 12:1207–1215

    Article  CAS  Google Scholar 

  • Monro CA (1931) Polychaeta, Oligochaeta, Echiuroidea and Sipunculoidea. Sci Rep Barrier Reef Exped 4:1037

    Google Scholar 

  • Monteiro FA, Solé-Cava AM, Thorpe JP (1997) Extensive genetic divergence between populations of the common intertidal sea anemone Actinia equina from Britain, the Mediterranean and the Cape Verde Islands. Mar Biol 129:425–433

    Article  Google Scholar 

  • Murina VV (1964) Report on the sipunculid worms from the coast of South Chinese Sea. Tr Inst Okeanol Akad Nauk SSSR 69:254–270

    Google Scholar 

  • Murina VV (1967) On the sipunculid fauna of the littoral of Cuba. Zool Zh 46:35–47

    Google Scholar 

  • Pfenninger M, Posada D (2002) Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora): Fragmentation, corridor migration, and secondary contact. Evolution 56:1776–1788

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  Google Scholar 

  • Ramírez-Soriano A, Ramos-Onsins SE, Rozas J, Calafell F, Navarro A (2008) Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 179:555–567

    Article  Google Scholar 

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    Article  CAS  Google Scholar 

  • Rice ME (1975) Survey of the Sipuncula of the coral and beach rock communities of the Caribbean Sea. In: Rice ME, Todorovic M (eds) Proceedings of the International Symposium of Sipuncula and Echiura. Naucno Delo Press, Belgrade, pp 35–49

    Google Scholar 

  • Rice ME (1981) Larvae adrift: patterns and problems in life histories of sipunculans. Am Zool 21:605–619

    Google Scholar 

  • Rice ME, MacIntyre IG (1979) Distribution of Sipuncula in the coral reef community, Carrie Bow Cay, Belize. Smithson Contrib Mar Sci 12:311–320

    Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2009) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  Google Scholar 

  • Rubinoff D, Holland BS (2005) Between two extremes: Mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Syst Biol 54:952–961

    Article  Google Scholar 

  • Scheltema RS (1975) The frequency of long-distance larval dispersal and the rate of genes of gene-flow between widely separated populations of sipunculans. In: Rice ME, Todorovic M (eds) Proceedings of the International Symposium on the Biology of the Sipuncula and Echiura. Kotor, Yugoslavia, pp 199–210

    Google Scholar 

  • Scheltema RS (1988) Initial evidence for the transport of teleplanic larvae of benthic invertebrates across the East Pacific Barrier. Biol Bull 174:145–152

    Article  Google Scholar 

  • Scheltema RS, Hall JR (1975) The dispersal of pelahosphaera larvae by ocean currents and the geographical distribution of sipunculans. In: Rice EM, Tororovic M (eds) Proceedingns of the International Symposium on the Biology of the Sipuncula and Echiura. Kotor, Yugoslavia, pp 103–115

    Google Scholar 

  • Schulze A, Cutler EB, Giribet G (2005) Reconstructing the phylogeny of the Sipuncula. Hydrobiologia 535(536):277–296

    Article  Google Scholar 

  • Schulze A, Cutler EB, Giribet G (2007) Phylogeny of sipunculan worms: A combined analysis of four gene regions and morphology. Mol Phylogenet Evol 42:171–192

    Article  CAS  Google Scholar 

  • Schwaninger HR (2008) Global mitochondrial DNA phylogeography and biogeographic history of the antitropically and longitudinally disjunct marine bryozoan Membranipora membranacea L. (Cheilostomata): Another cryptic marine sibling species complex? Mol Phylogenet Evol 49:893–908

    Article  CAS  Google Scholar 

  • Selenka E, de Man JG, Bulow C (1883) Die Sipunculiden, eine systematische Monographie. Semper Reisen in Archipel Phillippinen 2(4):1–131

    Google Scholar 

  • Shipley AE (1898) Report on the Gephyrean worms collected by Mr. J. Stanley Gardiner at Rotuma and Funafuti. J Zool:468 − 473

  • Shulman MJ, Bermingham E (1995) Early life histories, ocean currents, and the population genetics of Caribbean reef fishes. Evolution 49:897–910

    Article  Google Scholar 

  • Sluiter CP (1891) Die Evertebraten aus der Sammlung des Koniglichen naturwissenschaftlichen Vereins in Nederlandisch-Indien in Batavia. Naturk Tijdschr Nederl Ind 50:102–123

    Google Scholar 

  • Smith SA, Dunn CW (2008) Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24:715–716

    Article  CAS  Google Scholar 

  • Solé-Cava AM, Thorpe JP (1986) Genetic differentiation between morphotypes of the marine sponge Suberites ficus (Demospongiae, Hadromerida). Mar Biol 93:247–253

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web Servers. Syst Biol 57:758–771

    Article  Google Scholar 

  • Staton J, Rice ME (1999) Genetic differentiation despite teleplanic larval dispersal: Allozyme variation in sipunculans of the Apionsoma misakianum species complex. Bull Mar Sci 65:467–480

    Google Scholar 

  • Stephen AC (1960) Echiuroidea and Sipunculoidea from Senegal, West Africa. Bulletin de l’Institut Francais d’Afrique Noire 22a:512–520

    Google Scholar 

  • Stephen AC, Edmonds SJ (1972) The phyla Sipuncula and Echiura. Trustees British Mus (Nat Hist), London 528 p

    Google Scholar 

  • Tarjuelo I, Posada D, Crandall KA, Pascual M, Turon X (2004) Phylogeography and speciation of colour morphs in the colonial ascidian Pseudodistoma crucigaster. Mol Ecol 13:3125–3136

    Article  CAS  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633

    CAS  Google Scholar 

  • Ten Broeke A (1925) Westindische Sipunculiden und Echuiriden. Bijdr Dierkd 24:81–96

    Google Scholar 

  • Terranova MS, Lo Brutto S, Arculeo M, Mitton JB (2007) A mitochondrial phylogeography of Brachidontes variabilis (Bivalvia : Mytilidae) reveals three cryptic species. J Zool Syst Evol Res 45:289–298

    Article  Google Scholar 

  • Thornhill DJ, Mahon AR, Norenburg JL, Halanych KM (2008) Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol Ecol 17:5104–5117

    Article  CAS  Google Scholar 

  • Thorpe JP, Solé-Cava AM (1994) The use of allozyme electrophoresis in invertebrate systematics. Zool Scr 23:3–18

    Article  Google Scholar 

  • Uthicke S, O’Hara TD, Byrne M (2004) Species composition and molecular phylogeny of the Indo-Pacific teatfish (Echinodermata : Holothuroidea) beche-de-mer fishery. Mar Freshwater Res 55:837–848

    Article  Google Scholar 

  • Varón A, Sy Vinh L, Wheeler WC (2009) POY version 4: phylogenetic analysis using dynamic homologies. Cladistics. doi:10.1111/j.1096-0031.2009.00282.x

    Google Scholar 

  • Warnke K, Soller R, Blohm D, Saint-Paul U (2004) A new look at geographic and phylogenetic relationships within the species group surrounding Octopus vulgaris (Mollusca, Cephalopoda): indications of very wide distribution from mitochondrial DNA sequences. J Zool Syst Evol Res 42:306–312

    Article  Google Scholar 

  • Waters JM, Roy MS (2004) Out of Africa: The slow train to Australasia. Syst Biol 53:18–24

    Article  Google Scholar 

  • Westheide W, Schmidt H (2003) Cosmopolitan versus cryptic meiofaunal polychaete species: an approach to a molecular taxonomy. Helgol Mar Res 57:1–6

    Google Scholar 

  • Wheeler W, Aagesen L, Arango CP, Faivovich J, Grant T, D’Haese C, Janies D, Smith WL, Varon A, Giribet G (2006) Dynamic homology and phylogenetic systematics: a unified approach using POY. American Museum of Natural History, 365 pp

  • Wiens JJ (1999) Polymorphism in systematics and comparative biology. Annu Rev Ecol Syst 30:327–362

    Article  Google Scholar 

Download references

Acknowledgments

This study is dedicated to the memory of Edward Cutler who guided us through the study of sipunculans. We will always remember his friendship and passion for his beloved sipunculan worms. Anja Schulze, Harlan Dean, Joergensen Hylleberg, Mary Rice, and Ramlall Biseswar assisted with samples, and Cláudio Gonçalves Tiago with fieldwork in New Caledonia. Sónia Andrade assisted with population genetics software, and Prashant Sharma with phylogenetic analyses. This study was funded by a grant from the MarCraig foundation, which supported Gisele Kawauchi and the sipunculan research at the Giribet Laboratory. Fieldwork to New Caledonia was supported by the Putnam Expedition Grants program of the Museum of Comparative Zoology. David Paulaud from Direction de l’Environnement (Province Sud) facilitated collecting permits for New Caledonia. Bertrand Richer De Forges, Jean-Lou Justine, and Claire Goiran (IRD-Noumea) assisted with logistics in Noumea. Ann Covert and the Museum of Comparative Zoology provided additional funding and support. Three anonymous reviewers and Associate Editor Cynthia Riginos provided comments that helped to improve earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisele Y. Kawauchi.

Additional information

Communicated by C. Riginos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1008 kb)

Appendices

Appendix 1

Voucher details for specimens used in the molecular analyses. Repositories abbreviated as follows: Museum of Comparative Zoology, Harvard University (MCZ)

Apiosoma misakianum (Ikeda 1904)

MCZ DNA100737. Israel: Eilat; on old rope; 15-30 m; October 2002; leg. N. Ben Eliahu; determined by A. Schulze

Aspidosiphon laevis de Quatrefages, 1865

MCZ DNA102616. New Caledonia: Ilot Maitre, South Province; in coral rubble; 6 m deep; 22°19′35.9″S 166°24′40.2″E; G. Kawauchi satation NC03; 16 November 2007; leg. G. Kawauchi, C. Tiago; determined by G. Kawauchi

Antillesoma antillarum (Grübe and Oersted, 1858)

MCZ DNA100759. Barbados: Six Men’s Bay; 27 June 2002; leg. E.B. Cutler, G. Kawauchi, J. Saiz-Salinas, A. Schulze; determined by A. Schulze

Phascolosoma granulatum (Leuckart 1828)

MCZ DNA100201. Spain: Girona, Blanes; 12 August 1997; leg. G. Giribet, C. Palacín; determined by E.B. Cutler and H.K. Dean

Phascolosoma nigrescens (Keferstein 1865)

MCZ DNA100822. South Africa: KwaZulu Natal, St. Lucia, Perrier’s Rock; under oyster shells (Saccostrea cucculata); 18 October 2002; leg. R. Biseswar; determined by A. Schulze

Phascolosoma turnerae Rice 1985

MCZ DNA100230. Bahamas: Southwest Reef; in artificial fibrous collector, deployed on sandy bottom at 519 m deep; approximately 24°52.88′N 77° 32.23′W; Rice station 324Q; February 2000; Harbor Branch Johnson Sea Link Submersible, Dive 3197; determined by M. Rice

Phascolosoma scolops (Selenka and Man 1883)

MCZ DNA100814. South Africa: KwaZulu Natal, St. Lucia, Park Rynie Beach; intertidal; 22 August 2002; leg. R. Biseswar; determined by A. Schulze

Phascolosoma stephensoni (Stephen 1942)

MCZ DNA100818. South Africa: KwaZulu Natal, St. Lucia, Park Rynie Beach; intertidal; 9 September 2002; leg. R. Biseswar; determined by A. Schulze

Phascolosoma albolineatum (Baird 1868)

MCZ DNA100396. Thailand: Phuket; intertidal reef; February 2001; leg. J. Hylleberg; determined by E.B. Cutler and H.K. Dean

Phascolosoma perlucens Baird 1868

MCZ DNA100748. Barbados: Bank Reef; in coral rubble; 15–20 m deep; 26 June 2002; leg. G. Kawauchi, J. Saiz-Salinas, A. Schulze; determined by A. Schulze

MCZ DNA100749. Barbados: Bank Reef; in coral rubble; 15–20 m deep; 24 June 2002; leg. G. Kawauchi, J. Saiz-Salinas, A. Schulze; determined by A. Schulze

MCZ DNA100750. Barbados: Martin’s Bay; in coral rubble; 21 June 2002; leg. E.B. Cutler, G. Kawauchi, J. Saiz-Salinas, A. Schulze; determined by A. Schulze

MCZ DNA100751. Barbados: River Bay; 15–20 m deep; 26 June 2002; leg. G. Kawauchi, J. Saiz-Salinas, A. Schulze; determined by A. Schulze

MCZ DNA100995. Belize: north of Southwater Caye, Tabacco Reef; intertidal rock; M. Rice station CB03-10E; 20 April 2003; leg. M. Rice, A. Schulze; determined by M. Rice and A. Schulze

MCZ DNA101914 (MCZ IZ66181). Venezuela: Cubagua Island; 10°48′14.7″N 64°9′53.76″W; 16 December 2003; I. leg. Hernández-Ávila; determined by H.K. Dean

MCZ DNA101915 (MCZ IZ66188). Venezuela: Cubagua Island; in rocks; Thalassia bed; 10°48′7,68″N 64°10′52″W; 15 January 2004; leg. I. Hernández-Ávila; determined by H.K. Dean

MCZ DNA103542. USA: Florida, Florida Keys, Missouri Key; in coralline limestone; intertidal; 24°40.6′N 81°09.9″W; M. Rice station 170j; 6 April 2008; leg. A. Maiorova; determined by M. Rice

MCZ DNA103543. USA: Florida, Lake Worth, Peanut Island; on sea wall at boat launch, among clumps of encrusting vermetids, oysters, and barnacles; 26°47.0′N 80°02.5′ W; M. Rice station 218c; 30 April 2008; leg. A. Shulze; determined by M. Rice

MCZ DNA103802. Costa Rica: Bahía Salinas, Isla Bolaños, rocky intertidal, 16 August 2006, leg. H.K. Dean, determined by H.K. Dean

MCZ DNA101013. USA: Florida, St. Lucie Inlet, Bessy Cove, on sea wall and rocks, among vermetid and oyster encrustations; 27°11.1′N 80°09.9′W; M. Rice station 156jj; 10 March 2008; leg. S. Reed; determined by M. Rice

Phascolosoma aff. perlucens

MCZ DNA100395. Thailand: Phuket; intertidal reef; February 2000; leg. J. Hylleberg; determined by E.B. Cutler and H.K. Dean

MCZ DNA100819. South Africa: KwaZulu Natal, St. Lucia, Perrier’s Rock; under oyster shells (Saccostrea cucculata); intertidal; 10 October 2002; leg. R. Biseswar; determined by A. Schulze

MCZ DNA100820. South Africa: KwaZulu Natal, St. Lucia, Park Rynie Beach; intertidal; 22 August 2002; leg. R. Biseswar; determined by A. Schulze

MCZ DNA100821. South Africa: KwaZulu Natal, St. Lucia, Park Rynie Beach; intertidal; 9 September 2002; leg. R. Biseswar; determined by A. Schulze

MCZ DNA102620. New Caledonia: South Province, Ilot Maitre; in coral rubble; 6 m deep; 22°19′35.9”S 166°24′40.2″E; G. Kawauchi station NC03; 16 November 2007; leg. G. Kawauchi, C. Tiago; determined by G. Kawauchi

Appendix 2

List of slides with hooks deposited at the MCZ

Species name

MCZ accession number

Phascolosoma aff. perlucens

DNA100395

Phascolosoma aff. perlucens

DNA100395-6

Phascolosoma aff. perlucens

DNA100395-8

Phascolosoma aff. perlucens

DNA100395-9

Phascolosoma albolineatum

DNA100396-2

Phascolosoma perlucens

DNA100748

Phascolosoma perlucens

DNA100748-5

Phascolosoma aff. perlucens

DNA100819-7

Phascolosoma aff. perlucens

DNA100819-9

Phascolosoma aff. perlucens

DNA100820

Phascolosoma aff. perlucens

DNA100820-4

Phascolosoma aff. perlucens

DNA100820-8

Phascolosoma aff. perlucens

DNA100821

Phascolosoma perlucens

DNA100995-3

Phascolosoma perlucens

DNA101013

Phascolosoma perlucens

DNA101914

Phascolosoma perlucens

DNA103542-2

Phascolosoma perlucens

DNA103543-1

Phascolosoma perlucens

DNA103802-2

Phascolosoma aff. perlucens

DNA102620-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawauchi, G.Y., Giribet, G. Are there true cosmopolitan sipunculan worms? A genetic variation study within Phascolosoma perlucens (Sipuncula, Phascolosomatidae). Mar Biol 157, 1417–1431 (2010). https://doi.org/10.1007/s00227-010-1402-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1402-z

Keywords

Navigation