Skip to main content
Log in

Growth pattern of the sea urchin, Loxechinus albus (Molina, 1782) in southern Chile: evaluation of growth models

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The growth pattern of Loxechinus albus in southern Chile was studied using size-at-age data obtained by reading growth bands on the genital plates. The scatter plots of sizes-at-age for samples collected in three different locations indicated that growth is linear between ages 2 and 10. Five different growth models, including linear, asymptotic and non-asymptotic functions, were fitted to the data, and model selection was conducted based on the Akaike information criteria (AIC) and the Bayesian information criteria (BIC). The AIC identified the Tanaka model as the most suitable for two of the three sites. However, the BIC led to the selection of the linear model for all zones. Our results show that the growth pattern of L. albus is different from the predominantly asymptotic pattern that has been reported for other sea urchin species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agatsuma Y, Nakata A (2004) Age determination, reproduction and growth of the sea urchin Hemicentrotus pulcherrimus in Oshoro Bay, Hokkaido, Japan. J Mar Biol Assoc UK 84:401–405

    Article  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petran BN, Csaaki F (eds) International symposium on information theory, 2nd edn. Acadeemiai Kiadi, Budapest, pp 267–281

    Google Scholar 

  • Andrew N, Agatsuma Y, Ballesteros E, Bazhin A, Creaser E, Barnes D, Botsford L et al (2002) Status and Management of World Sea Urchin Fisheries. Oceanogr Mar Biol A Rev 40:343–425

    Google Scholar 

  • Barahona N, Jerez G (1997) La pesquería del erizo (Loxechinus albus) en las regiones X a XII de Chile: 13 años de historia (1985–1997). In: Resúmenes XII Congreso de Ciencias del Mar (Chile), 14 pp

  • Barahona N, Orensanz JM, Parma A, Jerez G, Romero C, Miranda H, Zuleta A, Cataste V, Gálvez P (2003) Bases biológicas para rotación de áreas en el recurso erizo. Informe Final. Fondo de Investigación Pesquera, Proyecto FIP No. 2000–18, 197 pages, tables, figures, appendices. Instituto de Fomento Pesquero (IFOP), Valparaíso

    Google Scholar 

  • Blicher ME, Rysgaard S, Sejr MK (2007) Growth and production of sea urchin Strongylocentrotus droebachiensis in a high-Arctic fjord, and growth along a climatic gradient (64 to 77°N). Mar Ecol Prog Ser 341:89–102

    Article  Google Scholar 

  • Botsford LW, Quinn JF, Wing SR, Brittnacher JG (1993) Rotating spatial harvest of a benthic invertebrate, the red sea urchin Strongylocentrotus franciscanus. In: Kruse G, Eggers DM, Marasco RJ, Pautzke C, Quinn TJ II (eds) Proceedings of the international symposium on management strategies of exploited fish population. University of Alaska, Fairbanks, pp 408–429

    Google Scholar 

  • Botsford LW, Smith BD, Quinn JF (1994) Bimodality in size distribution: the red sea urchin Strongylocentrotus franciscanus as an example. Ecol Appl 4:42–50

    Article  Google Scholar 

  • Brady SM, Scheibling RE (2006) Changes in growth and reproduction of green sea urchins, Strongylocentrotus droebachiensis (Muller), during repopulation of the shallow subtidal zone after mass mortality. J Exp Mar Biol Ecol 335:277–291

    Article  Google Scholar 

  • Bromaghin JF (1993) Sample size determination for interval estimation of multinomial probabilities. Am Stat 47(3):203–206

    Article  Google Scholar 

  • Brouwer SL, Griffiths MH (2005) Influence of sample design on estimate of growth and mortality in Argyrozona argyrozona (Pisces: Sparidae). Fish Res 74:44–54

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information—theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 22(2):261–304

    Article  Google Scholar 

  • Campana S (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59:197–242

    Article  Google Scholar 

  • Campana SE, Annand MC, McMillan JI (1995) Graphical and statistical methods for determining the consistency of age determinations. Trans Am Fish Soc 124:131–138

    Article  Google Scholar 

  • Cellario Ch, Fenauz L (1990) Paracentrotus lividus (Lamarck) in culture (larval and benthic phases): parameters of growth observed during two years following metamorphosis. Aquaculture 84:173–188

    Article  Google Scholar 

  • Chen Y (1996) A Monte Carlo study on impacts of the size of subsample catch on estimation of the fish stock parameters. Fish Res 26:207–223

    Article  Google Scholar 

  • Chen Y, Chen L, Stergiou KI (2003) Impacts of data quantity on fisheries stock assessment. Aquat Sci 65:92–98

    Article  Google Scholar 

  • Comely CA, Ansell AD (1988) Population density and growth of Echinus esculentus L. on the Scottish west coast. Estuar Coast Shelf Sci 29:311–334

    Article  Google Scholar 

  • Cope JM, Punt AE (2007) Admitting ageing error when fitting growth curves: an example using the von Bertalanffy growth function with random effects. Can J Fish Aquat Sci 64:205–218

    Article  Google Scholar 

  • Crapp GB, Willis ME (1975) Age determination in the sea urchin Paracentrotus lividus (Lamarck), with notes on the reproductive cycle. J Exp Mar Biol Ecol 20:157–178

    Article  Google Scholar 

  • Dafni J (1992) Growth rate of the sea urchin Tripneustes gratilla elatensis. Israel J Zool 38:25–33

    Google Scholar 

  • Duran L, Falcón C, Gálvez M, Godoy C, Melo C, Oliva D (1999) Elaboración de claves talla-edad para el recurso erizo. Proyecto FIP No. 1997–30, 197 pp, tables, figures, appendices. Instituto de Fomento Pesquero (IFOP), Valparaíso

    Google Scholar 

  • Ebert TA (1999) Plant and animal population methods in demography. Academic Press, San Diego

  • Ebert TA, Russell MP (1992) Growth and mortality estimates for red sea urchin, Strongylocentrotus franciscanus, from San Nicolas Island, California. Mar Ecol Prog Ser 81:31–41

    Article  Google Scholar 

  • Ebert TA, Russell MP (1993) Growth and mortality of subtidal red sea urchin (Strongylocentrotus franciscanus) at San Nicolas Island, California, USA: problems with models. Mar Biol 117:79–89

    Article  Google Scholar 

  • Ebert TA, Southon JR (2003) Red sea urchin (Strongylocentrotus franciscanus) can live over 100 years: confirmation with A-bomb 14carbon. Fish Bull 101(4):915–922

    Google Scholar 

  • Ebert TA, Dixon JD, Schroeter SC, Kalvass PE, Richmond NT, Bradbury WA, Woodby DA (1999) Growth and mortality of red sea urchins (Storngylocentrotus franciscanus) across a latitudinal gradient. Mar Ecol Prog Ser 190:189–209

    Article  Google Scholar 

  • Fletcher RI (1974) The quadratic law of damped exponential growth. Biometrics 30:111–124

    Article  Google Scholar 

  • Fuji A (1967) Ecological studies on the growth and food consumption of Japanese common littoral sea urchin, Strongylocentrotus intermedius (A. Agassiz). Mec Fac Fish Hokkaido Univ 15(2):83–160

    Google Scholar 

  • Gage JD (1987) Growth of the deep-sea irregular sea urchins Echinosigra phiale and Hemiaster expergitus in the Rockall Trough (N.E. Atlantic Ocean). Mar Biol 96:19–30

    Article  Google Scholar 

  • Gage JD (1992) Natural growth bands and growth variability in the sea urchins Echinus esculentus: results from tetracycline tagging. Mar Biol 114:607–616

    Article  Google Scholar 

  • Gage JD, Tyler PA (1985) Growth and recruitment of the deep-sea urchin Echinus affinis. Mar Biol 90:41–53

    Article  Google Scholar 

  • Gage JD, Tyler PA, Nichols D (1986) Reproduction and growth of Echinus acutus var. norvegicus Duber & Koren and E. elegans Duber & Koren on the continental slope off Scotland. J Exp Mar Biol Ecol 101:61–83

    Article  Google Scholar 

  • Gebauer P (1992) Validación experimental de los anillos de crecimiento de Loxechinus albus (Molina, 1782) (Echinodermata: Echinoidea) en la reserve marina de Mehuin. Chile. Tesis, Esc. Biología Marina, Univ. Austral de Chile. 66 pp

  • Gebauer P, Moreno CA (1995) Experimental validation of the growth rings of Loxechinus albus (Molina, 1782) in southern Chile (Echinodermata: Echinoidea). Fish Res 21:423–435

    Article  Google Scholar 

  • Grosjean Ph (2001) Growth model of reared sea urchin Paracentrotus lividus (Lamarck, 1816). Ph.D. thesis, Universite Libre de Bruxelles, Bélgica

  • Grosjean Ph, Spirlet Ch, Jangoux M (2003) A functional growth model with intraspecific competition applied to a sea urchin, Paracentrotus lividus. Can J Fish Aquat Sci 60:237–246

    Article  Google Scholar 

  • Katsanevakis S, Maravelias CD (2008) Modelling fish growth: multi-model inference as a better alternative to a priori using von Bertalanffy equation. Fish Fish 9:178–187

    Google Scholar 

  • Keesing JK, Hall KC (1998) Review of harvests and status of world’s sea urchin fisheries points to opportunities for aquaculture. J Shellfish Res 17:1597–1604

    Google Scholar 

  • Kenner MC (1992) Population dynamics of the sea urchin Strongylocentrotus purpuratus in a central California kelp forest: recruitment, mortality, growth, and diet. Mar Biol 112:107–118

    Article  Google Scholar 

  • Lai HL, Gunderson DR (1987) Effects of ageing errors on estimates of growth, mortality and yield per recruit for walleye Pollock (Theragra chalcogramma). Fish Res 5:287–302

    Article  Google Scholar 

  • Lamare MD, Mladenov PH (2000) Modelling somatic growth in the sea urchin Evechinus chloroticus (Echinoidea: Echinometridae). J Exp Mar Biol Ecol 243:17–43

    Article  Google Scholar 

  • Moreno CA, Barahona N, Molinet C, Orensanz JM, Parma A, Zuleta A (2007) From crisis to institutional sustainability in the Chilean Sea Urchin Fishery, chap 3. In: McClanahan TR, Castilla JC (eds) Fisheries management: progress towards sustainability. Blackwell Publishing, Oxford, pp 43–64

    Google Scholar 

  • Morgan LE, Botsford LW, Wing SR, Smith BD (2000) Spatial variability in growth and mortality of the red sea urchin Strongylocentrotus franciscanus, in northern California. Can J Fish Aquat Sci 57:980–992

    Article  Google Scholar 

  • Nichols D, Sime AAT, Bishop GM (1985) Growth in populations of the sea urchin Echinus esculentus L. (Echinodermata: Echinoidea) from the English Channel and firth of Clyde. J Exp Mar Biol Ecol 86:219–228

    Article  Google Scholar 

  • Ohnishi S, Akamine T (2006) Extension of von Bertalanffy growth model incorporating growth patterns of soft and hard tissues in bivalve mollusks. Fish Sci 72:787–795

    Article  CAS  Google Scholar 

  • Orensanz JM, Parma AM, Jerez G, Barahona N, Montecinos M, Elias I (2005) What are the key elements for the sustainability of “S-Fisheries”? Insights from South America. Bull Mar Sci 76:527–556

    Google Scholar 

  • Quinn TJ, Deriso RB (1999) Quantitative fish dynamics. Oxford University Press, New York

    Google Scholar 

  • Quinn JF, Wing SR, Botsford LW (1993) Harvest refugia in marine invertebrate fisheries: models and applications to red sea urchin Strongylocentrotus franciscanus. Amer Zool 33:537–550

    Google Scholar 

  • Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300

    Article  Google Scholar 

  • Rogers-Bennett L, Rogers DW, Bennett WA, Ebert TA (2003) Modeling red sea urchin (Strongylocentrotus franciscanus) growth using six growth functions. Fish Bull 101(3):614–626

    Google Scholar 

  • Rowley RJ (1990) Newly settled sea urchins in a kelp bed and urchin barren ground: a comparison of growth and mortality. Mar Ecol Prog Ser 62:229–240

    Article  CAS  Google Scholar 

  • Russell MP (1987) Life history traits and resource allocation in the purple sea urchin Strongylocentrotus purpuratus (Stimpson). J Exp Mar Biol Ecol 108:199–216

    Article  Google Scholar 

  • Russell MP, Meredith RW (2000) Natural growth lines in echinoid ossicles are not reliable indicators of age: a test using (Strongylocentrotus droebachiensis). Invert Biol 119:410–420

    Google Scholar 

  • Schnute J (1981) A versatile growth model with statistically stable parameters. Can J Fish Aquat Sci 38:1128–1140

    Article  Google Scholar 

  • Schnute J, Fournier D (1980) A new approach to length-frequency analysis: growth structure. Can J Fish Aquat Sci 37:1337–1351

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Shelton AO, Woodby DA, Hebert K, Witman JD (2006) Evaluating age determination and spatial patterns of growth in Red Sea urchins in Southeast Alaska. Trans Am Fish Soc 135:1670–1680

    Article  Google Scholar 

  • Sime AAT, Cranmer GJ (1985) Age and growth of North Sea echinoids. J Mar Biol Assoc UK 65:583–588

    Article  Google Scholar 

  • Smith BD, Botsford LW, Wing SR (1998) Estimation of growth and mortality parameters from size frequency distribution lacking age patterns: the read sea urchin (Strongylocentrotus franciscanus) as an example. Can J Fish Aquat Sci 55:1236–1247

    Article  Google Scholar 

  • Soualili DL, Guillou M, Semroud R (1999) Age and growth of the echinoid Sphaerechinus granularis from the Algerian coast. J Mar Biol Assoc UK 79:1139–1140

    Article  Google Scholar 

  • Stotz W, González S, López C (1992) Siembra experimental del erizo rojo Loxechinus albus (Molina) en la costa expuesta del centro-norte: efectos del erizo negro Tetrapygas Níger (Molina) sobre la permanencia y crecimiento de juveniles. Invest Pesq (Chile) 37:107–117

    Google Scholar 

  • Tanaka M (1982) A new growth curve with expresses infinite incresase. Publ Amakusa Mar Biol Lab 6:167–177

    Google Scholar 

  • Turon X, Giribet G, Lopez S, Palacin C (1995) Growth and population structure of Paracentrotus lividus (Echinodermata: Echinoidea) in two contrasting habitats. Mar Ecol Prog Ser 122:193–204

    Article  Google Scholar 

  • Vadas RL, Smith B, Beal B, Dowling T (2002) Sympatric growth morphs and size bimodality in the green sea urchin (Strongylocentrotus droebachiensis). Ecol Monogr 72:113–132

    Google Scholar 

  • Von Bertalanffy L (1938) A quantitative theory of organic growth. Hum Biol 10:181–213

    Google Scholar 

  • Ward EJ (2008) A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools. Ecol Model 211:1–10

    Article  CAS  Google Scholar 

  • Williams H (2002) Sea urchin fisheries of the world: a review of their status, management strategies and biology of the principal species. Draft background paper. Department of Primary Industries, Water and Environment. Tasmania. 27 pp

Download references

Acknowledgments

Luis Flores is thankful to CONICYT, Escuela de Graduados (UDEC), and CREO grant. We thank Manira Matamala (Consultora Pupelde) and her staff in Quellon as well as Victor Acuña and his family from Melinka for their hospitality and collaboration during the fieldwork. LF is thankful to Paulina Gebauer who kindly provided initial training in genital plate reading. Finally, we want to thank Lobo Orensanz, Carlos Molinet, and Victor Ruiz for actively participating in the 2007 scientific cruise to the Chonos archipelago in the LM Ayayay research boat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Flores.

Additional information

Communicated by M. A. Peck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores, L., Ernst, B. & Parma, A.M. Growth pattern of the sea urchin, Loxechinus albus (Molina, 1782) in southern Chile: evaluation of growth models. Mar Biol 157, 967–977 (2010). https://doi.org/10.1007/s00227-009-1377-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1377-9

Keywords

Navigation