Skip to main content
Log in

Genetic structure across the GBR: evidence from short-lived gobies

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The Great Barrier Reef (GBR) exhibits distinct cross-shelf zonation. These patterns are particularly well documented in reef fishes and have been attributed to either environmental gradients (e.g. wave energy, oceanography) or barriers to gene flow. This study examined the extent to which barriers to gene flow contribute to cross-shelf patterns by examining the mitochondrial DNA of gobies (genus Eviota). The genus Eviota was selected due to its extreme life history characteristics (shortest vertebrate lifespan) and cross-shelf distribution patterns (E. queenslandica, inner- and mid-shelf, and E. albolineata mid- and outer-shelf). Although cross-shelf barriers to gene flow were predicted, this study found no population structure between shelf locations. However, a genetically distinct population of E. queenslandica (the inner-shelf species) was observed at North Direction Island (Phist = 0.088, P = 0.004). As no comparable structure was observed in E. albolineata (the outer-shelf species) it may be that habitat type (E. queenslandica = reef lagoon, E. albolineata = reef crest) is a significant factor driving the structure observed in E. queenslandica. Larval behaviour, olfactory or auditory senses and reef selection at settlement could be assisting larvae to return to reefs similar to natal reefs. We suggest that ecological gradients are more important than barriers to gene flow in structuring cross-shelf distributions within Eviota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahnelt H, Goschl J, Dawson MN, Jacobs DK (2004) Geographical variation in the cephalic lateral line canals of Eucyclogobius newberryi, (Teleostei, Gobiidae) and its comparison with molecular phylogeography. Folia Zool 53:385–398

    Google Scholar 

  • Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local replenishment of coral reef fish populations in marine reserves. Science 316:742–744

    Article  CAS  PubMed  Google Scholar 

  • Atema J, Kingsford MJ, Gerach G (2002) Larval reef fish could use odour for detection, retention, and orientation to reef. Mar Ecol Prog Ser 241:151–160

    Article  Google Scholar 

  • Ayre DJ, Hughes TP (2000) Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution 54:1590–1605

    CAS  PubMed  Google Scholar 

  • Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2002) Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport: patterns, causes and consquences. J Mol Ecol 11:659–674

    Article  CAS  Google Scholar 

  • Bay LK, Crozier RH, Caley MJ (2006) The relationship between population genetic structure and pelagic larval duration in coral reef fishes on the Great Barrier Reef. Mar Biol 149:1247–1256

    Article  Google Scholar 

  • Bellwood DR, Wainwright PC (2001) Locomotion in Labrid fishes: implications for habitat use and cross-shelf biogeography on the Great Barrier Reef. Coral Reefs 20:139–150

    Article  Google Scholar 

  • Borsa P, Benzie JAH (1993) Genetic relationships among the top shells Trochus and Tectus (Prosobranctia: Trochidae) from the Great Barrier Reef. J Molluscan Stud 59:275–284

    Article  Google Scholar 

  • Bouchon-Navaro Y (1981) Quantitative distribution of the Chaetodontidae on a reef of Moorea Island (French Polynesia). J Exp Mar Biol Ecol 55:145–175

    Article  Google Scholar 

  • Bouchon-Navaro Y, Harmelin-Vivien ML (1981) Quantitative distribution of the herbivorous reef fishes in the Gulf of Aqaba (Red Sea). Mar Biol 63:76–86

    Article  Google Scholar 

  • Depczynski M, Bellwood DR (2005) Shortest recorded vertebrate lifespan found in a coral reef fish. Curr Biol 15:R288–R289

    Article  CAS  PubMed  Google Scholar 

  • Depczynski M, Bellwood DR (2006) Extremes, plasticity and invariance in vertebrate’s life history traits: insights from coral reef fishes. Ecology 87:3119–3127

    Article  PubMed  Google Scholar 

  • Dinesen ZD (1983) Patterns in distribution of soft corals across the central Great Barrier Reef, Australia. Coral Reefs 1:229–236

    Article  Google Scholar 

  • Doherty PJ, Planes S, Mather P (1995) Geneflow and larval duration in 7 species of fish from the Great Barrier Reef. Ecology 76:2373–2391

    Article  Google Scholar 

  • Done TJ (1982) Patterns in the distribution of coral communities across the central GBR. Coral Reefs 1:95–107

    Article  Google Scholar 

  • Dudgeon CL, Gust N, Blair D (2000) No apparent genetic basis to demographic differences in scarid fishes across continental shelf of the Great Barrier Reef. Mar Biol 137:1059–1066

    Article  Google Scholar 

  • Excoffier L, Smouse P, Quattro JM (1992) Analysis of Molecular Variance inferred from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:343–359

    Google Scholar 

  • Fauvelot C, Bernardi G, Planes S (2003) Reductions in the mitochondrial DNA diversity of coral reef fish provide evidence of population bottlenecks resulting from Holocene sea-level change. Evolution 57:1571–1583

    CAS  PubMed  Google Scholar 

  • Fulton C, Bellwood DR (2005) Wave-induced water motion and the functional implications for coral reef fish assemblages. Limnol Oceanogr 50:255–264

    Article  Google Scholar 

  • Gerlach G, Atema J, Kingsford MJ, Black KP, Miller-Sims V (2007) Smelling home can prevent dispersal of reef fish larvae. Proc Natl Acad Sci USA 104:858–863

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hellberg ME (2007) Footprints on water: the genetic wake of dispersal among reefs. Coral Reefs 26:463–473

    Article  Google Scholar 

  • Hoey AS, Bellwood DR (2008) Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef. Coral Reefs 27:37–47

    Article  Google Scholar 

  • Hopley D, Smithers SG, Parnell K (2007) The geomorphology of the Great Barrier Reef: development, diversity and change. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kingman JFC (1982) The coalescent. Stoch Process Appl 13:235–248

    Article  Google Scholar 

  • Kingsford MJ, Hughes JM (2005) Patterns of growth, mortality and size of the tropical damselfish Acanthochromis polyacanthus across the continental shelf of the Great Barrier Reef. Fish Bull 103:561–573

    Google Scholar 

  • Lecchini D, Planes S, Galzin R (2007) The influence of habitat characteristics and conspecifics on attraction and survival of coral reef fish juveniles. J Exp Mar Biol Ecol 341:85–90

    Article  Google Scholar 

  • Li W–H, Ellswerth DL, Krushkal J, Chang B-HJ, Hewett-Emmet D (1996) Rates of nucleotide substitution in primates and rodents and the generation–time effect hypothesis. Mol Phyl Evol 5:182–187

    Article  CAS  Google Scholar 

  • Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091

    Article  CAS  PubMed  Google Scholar 

  • McCauley RD, Cato DH (2000) Patterns of fish calling in a nearshore environment in the Great Barrier Reef. Phil Tans R Soc Lond Ser B 355:1289

    Article  CAS  Google Scholar 

  • Mukai T, Naruse K, Sato T, Shima A, Marisawa M (1997) Multiregional introgressions inferred from the mitochondrial DNA phylogeny of a hybridising species complex of gobiid fishes, genus Tridentiger. Mol Biol Evol 14:1258–1265

    CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Ovenden JR, Salini J, O’Connor S, Street R (2004) Pronounced genetic populations structure in a potentially vagile fish species (Pristipomoides multidens, Teleostei; Perciformes, Lutjaidae). From the East Indies triangle. Mol Ecol 13:1991–1999

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Preston NP, Doherty PJ (1994) Cross-shelf patterns in the community structure of coral-dwelling crustacean in the central region of the Great Barrier Reef. II. Cryptofauna. Mar Ecol Prog Ser 104:27–38

    Article  Google Scholar 

  • Read CI, Bellwood DR, van Herwerden L (2006) Ancient origins of Indo-Pacific coral reef fish biodiversity: a case study of the leopard wrasses (Labridae: Macropharyngodon). Mol Phyl Evol 38:808–819

    Article  CAS  Google Scholar 

  • Reid DG, Lal K, Mackenzie-Dodds J, Kaligis F, Littlewood DTJ, Williams ST (2006) Comparative phylogeography and species boundaries in Echinolittorina snails in the central Indo-West Pacific. J Biogeogr 33:990–1006

    Article  Google Scholar 

  • Riginos C, Nachman MW (2001) Population subdivision in marine environments: the contributions of biogeography, geographical distance and discontinuous habitat to genetic differentiation in a blennioid fish, Axoclinus nigricaudus. Mol Ecol 10:1439–1453

    Article  CAS  PubMed  Google Scholar 

  • Riginos C, Victor BC (2001) Larval spatial distributions and other early life history characteristics predict genetic differentiation in eastern Pacific blennioid fishes. Proc R Soc B 268:1931–1936

    Article  CAS  PubMed  Google Scholar 

  • Rocha LA, Bass AL, Robertson DR, Bowen BW (2002) Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae). Mol Ecol 11:243–252

    Article  CAS  PubMed  Google Scholar 

  • Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. Proc R Soc B 272:573–579

    PubMed  Google Scholar 

  • Rohlf FJ (1973) Algorithm 76. Hierarchical clustering using the minimum spanning tree. Comput J 16:93–95

    Google Scholar 

  • Russ G (1984) Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. I Levels of variability across the entire continental shelf. Mar Ecol Prog Ser 20:23–34

    Article  Google Scholar 

  • Sambrook J, Fritch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, USA

    Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis. Ver. 2.000. Genetics and Biometry Lab, Dept. of Anthropology, University of Geneva, Geneva

    Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 1:1114–1116

    Google Scholar 

  • Shulman MJ, Bermingham E (1995) Early life histories, ocean currents and the population genetics of Caribbean reef fishes. Evolution 49:897–910

    Article  Google Scholar 

  • Simpson SD, Meekan M, Montgomery J, McCauley R, Jeffs A (2005) Homeward sound. Science 308:221

    Article  CAS  PubMed  Google Scholar 

  • Stobutski IC, Bellwood DR (1998) Nocturnal orientation to reefs by late pelagic stage coral reef fishes. Coral Reefs 17:103–110

    Article  Google Scholar 

  • Subramanian S, Denver DR, Millar CD, Heupink T, Aschrafi A, Emslie SD, Baroni C, Lambert DM (2009) High mitogenomic evolutionary rates and time dependency. Trends Cell Biol 25:482–486

    CAS  Google Scholar 

  • Swofford DL (1998) PAUP* phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109

    Article  CAS  PubMed  Google Scholar 

  • Taylor MS, Hellberg ME (2005) Marine radiations at small geographic scales: speciation in neotropical reef gobies (Elactinus). Evolution 59:374–385

    PubMed  Google Scholar 

  • Thacker CE (2003) Molecular phylogeny of the gobioid fishes (Teleostei: Perciformes: Gobioidei). Mol Phyl Evol 26:354–368

    Article  CAS  Google Scholar 

  • Thacker CE (2004) Population structure in two species of the reef goby Gnatholepis (Teleostei: Perciformes) among four South Pacific island groups. Coral Reefs 23:357–366

    Article  Google Scholar 

  • Uthicke S, Benzie JAH (2000) Allozyme electrophoresis indicate high gene flow between populations of Holothuria (Microthele) nobilis (Holothuroidea: Aspidochirotida) on the Great Barrier Reef. Mar Biol 137:819–825

    Article  CAS  Google Scholar 

  • Uthicke S, Benzie JAH, Ballment E (1999) Population genetics of the fissiparous holothurian Stichopus chloronatus (Aspidochirotida) on the Great Barrier Reef. Coral Reefs 18:123–132

    Article  Google Scholar 

  • van Herwerden L, Choat JH, Dudgeon CL, Carlos G, Newman SJ, Frisch A, van Oppen M (2006) Contrasting patterns of genetic structure in two species of the coral trout Plectropomus (Serranidae) from east and west Australia: introgressive hybridisation or ancestral polymorphisms. Mol Phyl Evol 41:420–435

    Article  CAS  Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Sinauer Associates, Sunderland

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilkinson CR, Ceshire AC (1989) Patterns in the distribution of sponge populations across the central Great Barrier Reef. Coral Reefs 8:127–134

    Article  Google Scholar 

  • Williams DMcB (1983) Longitudinal and latitudinal variation in the structure of reef fish communities. In: Baker JJ, Carter RM, Sammarco PW, Stark KP (eds) Proceedings of the Inaugural Great Barrier Reef Conference. Townsville JCU, 265–270

  • Wismer S, Hoey AS, Bellwood DR (2009) Cross-shelf benthic community structure on the Great Barrier Reef: relationships between macroalgal cover and hervbivore biomass. Mar Ecol Prog Ser 376:45–54

    Article  Google Scholar 

Download references

Acknowledgments

We thank A. Gonzalez-Cabello for help procuring specimens; A. Hoey, R. Bonaldo and A. Gonzalez-Cabello for field support; S. Wismer for assistance with figures; S. Klantan, A. McMahon and H. Robson for lab assistance; C. Thacker for primer sequences; and A. Hoey, S. Wismer, D. Blair, S. Robson, A. Krockenberger and two anonymous reviewers for valuable comments on earlier drafts. This work was supported by JCU and the Australian Research Council Centre of Excellence for Coral Reef Studies (DRB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Bellwood.

Additional information

Communicated by T. Reusch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farnsworth, C.A., Bellwood, D.R. & van Herwerden, L. Genetic structure across the GBR: evidence from short-lived gobies. Mar Biol 157, 945–953 (2010). https://doi.org/10.1007/s00227-009-1375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1375-y

Keywords

Navigation