Skip to main content

Advertisement

Log in

Influence of nutrients in the feeding ecology of seagrass (Posidonia oceanica L.) consumers: a stable isotopes approach

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Nitrogen inputs to coastal environments can considerably alter the abundance of primary producers. However, how herbivores modify their trophic signatures and adjust to changes in food resource conditions remains controversial. Here, we assess the effect of nutrient availability on the diet shifts of the two main Mediterranean herbivores, the Sparid fish Sarpa salpa L. and the sea urchin Paracentrotus lividus (Lmk.) that feed mostly on the seagrass Posidonia oceanica L. (Delile), epiphytes and benthic macroalgae. To do this, we (1) investigate the patterns of isotopic composition (δ13C and δ15N signatures) of the two herbivores and their potential food sources in three areas of contrasting nutrient conditions and, (2) we assess the diet shift along this nutrient gradient by estimating the isotopic nutrient enrichment (i.e., the contribution of δ13C and δ15N signatures in consumers’ tissues relative to potential food sources). Food web signatures of δ13C were similar among the three study sites, and no patterns of δ13C shift were observed in their diets. In contrast, there was a consistent increase in N contents and δ15N along the nutrient gradient for all primary producers and their consumers. The rate of δ15N enrichment was also clearly distinctive between the two herbivores: in P. lividus it increased by 61% along the nutrient gradient, while in S. salpa it remained constant. Our results suggest that sea urchins behave as facultative omnivores and feed on vegetable or mixed diets depending on the trophic status of the system. It is unclear, however, if this modification is behavioral or the consequence of mere changes in the availability of food items, as animal epiphytes (e.g., hydrozoans, bryozoans and ascidians) can also became more abundant on seagrass leaves under increased nutrient conditions. In contrast, adult fish appear to feed on vegetal material independent of nutrient availability in the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcoverro T, Cebrián E, Ballesteros E (2001) The photosynthetic capacity of the seagrass Posidonia oceanica: influence of nitrogen and light. Mar Ecol Prog Ser 261:107–120

    CAS  Google Scholar 

  • Alcoverro T, Pérez M, Romero J (2004) Importance of within-shoot epiphyte distribution for the carbon budget of seagrasses: the example of Posidonia oceanica. Bot Mar 47:307–312

    Article  Google Scholar 

  • Azzurro E, Fanelli E, Mostarda E, Catra M, Andaloro F (2007) Resource partitioning among early colonizing Siganus luridus and native herbivorous fishes in Mediterranean: an integrated study based on gut-content analysis and stable isotope signatures. J Mar Biol Assoc UK 87:991–998

    Article  CAS  Google Scholar 

  • Ballesteros E (1992) Els vegetals i la zonació litoral: èspecies, comunitats i factors que influeixen en la seva distribució. Institut d’Estudis Catalans. Seció de Ciències Biològiques II Collecció III, Fitogeografia Costa Brava, p 616

    Google Scholar 

  • Ballesteros E, Zabala M (1993) El bentos: el marc físic. In: Alcover JA, Ballesteros E, Fornós JJ (eds) Història Natural de l’arxipèlag de Cabrera. Monografies de la Societat d’Història Natural de Balears, vol 2. CSIC-Ed, Palma de Mallorca, pp 663–685

  • Bjorndal KA (1980) Nutrition and grazing behavior of the green turtle Chelonia mydas. Mar Biol 56:147–154

    Article  CAS  Google Scholar 

  • Bosc E, Bricaud A, Antoine D (2004) Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations. Glob Biochem Cycles 18, Art No. GB1005. doi:10.1029/2003GB002034

  • Brett JR, Zala CA (1975) Daily pattern of nitrogen excretion and oxygen consumption of Sockeye Salmon (Oncorhynchus nerka) under controlled conditions. J Fish Res Board Can 32:2479–2486

    Google Scholar 

  • Brockington S, Clarke A (2001) The relative influence of temperature and food on the metabolism of a marine invertebrate. J Exp Mar Biol Ecol 258:87–99

    Article  PubMed  Google Scholar 

  • Bunn SE, Loneregan NR, Kempster MA (1995) Effects of acid washing on stable isotope radios of C and N in penaeid shrimp and seagrasses: implications for food-web studies using multiple stable isotopes. Limnol Oceanogr 40:622–625

    CAS  Google Scholar 

  • Campbell JE, Fourqurean JW (2009) Interspecific variation in the elemental and stable isotopic content of seagrass communities in South Florida. Mar Ecol Prog Ser 387:109–123

    Article  CAS  Google Scholar 

  • Cardona L, Aguilar A, Pazos L (2009) Delayed ontogenic dietary shift and high levels of omnivory in green turtles (Chelonia mydas) from the NW coast of Africa. Mar Biol 156(7):1487–1495

    Article  CAS  Google Scholar 

  • Casola E, Scardi M, Mazzella L, Fresi E (1987) Structure of the epiphytic community of Posidonia oceanica leaves in a shallow meadow. PSZN: Mar Ecol 8:285–296

    Article  Google Scholar 

  • Cebrián J, Duarte CM, Marbà N, Enríquez S, Gallegos M, Olesen B (1996) Herbivory on Posidonia oceanica: magnitude and variability in the Spanish Mediterranean. Mar Ecol Prog Ser 130:147–155

    Article  Google Scholar 

  • Cooper LW, DeNiro MJ (1989) Stable carbon isotope variability in the seagrass Posidonia oceanica: evidence for light intensity effects. Mar Ecol Prog Ser 50:225–229

    Article  CAS  Google Scholar 

  • Crawley KR, Hyndes GA, Vanderklift MA (2007) Variation among diets in discrimination of δ13C and δ15N in the amphipod Allorchestes compressa. J Exp Mar Biol Ecol 349:370–377

    Article  CAS  Google Scholar 

  • de la Morinière EC, Pollux BJA, Nagelkerken I, Hemminga MA, Huiskes AHL, van der Velde G (2003) Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: stable isotopes and gut-content analysis. Mar Ecol Prog Ser 246:279–289

    Article  Google Scholar 

  • Deegan LA, Wright A, Ayvazian SG, Finn JT, Golden H, Merson RR, Harrison J (2002) Nitrogen loading alters seagrass ecosystem structure and support of higher trophic levels. Aquat Conserv: Mar Freshw Ecosist 12:193–212

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geo Cosm Acta 42:495–506

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geo Cosm Acta 45:341–351

    Article  CAS  Google Scholar 

  • Duarte CM (1992) Nutrient concentration of aquatic plants: patterns across species. Limnol Oceanogr 37:882–889

    Article  CAS  Google Scholar 

  • Duarte CM, Cebrián J (1994) The fate of marine autotrophic production. Limnol Oceanogr 41:1758–1766

    Article  Google Scholar 

  • Estrada M (1996) Primary production in the northwestern Mediterranean. Sci Mar 60:55–64

    Google Scholar 

  • Estrada M, Margalef R (1988) Supply of nutrients to the Mediterranean photic zone along a persistent front. Oceanol Acta 9(Spec issue):133–142

    Google Scholar 

  • Fernandez C, Boudouresque CF (1998) Evaluating artificial diets for small Paracentrotus lividus (Echinodermata: Echinoidea). In: Mooi R, Telford M (eds) Echinoderms: San Francisco. Balkema, Rotterdam, pp 651–656

    Google Scholar 

  • Fernandez C, Boudouresque CF (2000) Nutrition of the sea urchin Paracentrotus lividus (Echinodermata: Echinoidea) fed different artificial food. Mar Ecol Prog Ser 204:131–141

    Article  CAS  Google Scholar 

  • Fernandez C, Caltagirone A (1998) Comportement alimentaire de Paracentrotus lividus (Echinodermata: Echinoidea) en milieu lagunaire. Rapp Comm Int Mer Médit 35:538–539

    Google Scholar 

  • Fourqurean JW, Jones RD, Zieman JC (1993) Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: inferences from spatial distributions. Estuar Coast Shef Sci 36:295–314

    Article  CAS  Google Scholar 

  • Fry B (1988) Foodweb structure on georges bank from stable C, N, and S isotopic compositions. Limnol Oceanogr 33:1182–1190

    CAS  Google Scholar 

  • Gacia E, Costalago D, Prado P, Piorno D, Tomas F (2009) Mesograzers in P. oceanica meadows: an update of data on gastropod -epiphyte- seagrass interactions. Bot Mar 52:439–447

    Article  CAS  Google Scholar 

  • Gaye-Siessegger J, Focken U, Abel HJ, Becker K (2003) Feeding level and diet quality influence trophic shift of C and N isotopes in Nile Tilapia (Oreochromis nicoticus (L.)). Isotop Environ Health Stud 39:125–134

    Article  CAS  Google Scholar 

  • Gaye-Siessegger J, Focken U, Muetzel S, Abel HJ, Becker K (2004) Feeding level and individual metabolic rate affect δ13C and δ15N values in carp: implications for food web studies. Oecologia 138:175–183

    Article  PubMed  Google Scholar 

  • Gili J-M, Coma R (1998) Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol Evol 13:316–321

    Article  Google Scholar 

  • Godley BJ, Thompson DR, Waldron S, Furness RW (1998) The trophic status of marine turtles as determined by stable isotope analysis. Mar Ecol Prog Ser 166:277–284

    Article  Google Scholar 

  • Goto M, Ito C, Sani Yahaya M, Wakamura K, Asano S, Wakai Y, Oka Y, Furuta M, Kataoka T (2004) Effects of age, body size and season on food consumption and digestion of captive dugongs (Dugong dugon). Mar Fresh Behav Physiol 37:89–97

    Article  Google Scholar 

  • Greenstone MH (1979) Spider feeding behaviour optimises dietary essential amino acid composition. Nature 282:501–503

    Article  Google Scholar 

  • Harrigan P, Zieman JC, Macko SA (1989) The base of nutritional support for the gray snapper (Lutjanus griseus): an evaluation based on a combined stomach content and stable isotope analysis. Bull Mar Sci 44:65–77

    Google Scholar 

  • Havelange S, Lepoint G, Dauby P, Bouquegnau JM (1997) Feeding of the sparid fish Sarpa salpa in a seagrass ecosystem: diet and carbon flux. PSZN: Mar Ecol 18:289–297

    Article  Google Scholar 

  • Hobson KA, Alisauskas RT, Clark RG (1993) Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analysis of diet. Condor 95:388–394

    Article  Google Scholar 

  • Holmer M, Marba N, Diaz-Almela E, Duarte CM, Tsapakis M, Danovaro R (2007) Sedimentation of organic matter from fish farms in oligotrophic Mediterranean assessed through bulk and stable isotope (δ13C and δ15N) analyses. Aquaculture 262:268–280

    Article  CAS  Google Scholar 

  • Jadot C, Ovidio M, Voss J (2002) Diel activity of Sarpa salpa (Sparidae) by ultrasonic telemetry in a Posidonia oceanica meadow of Corsiga (Mediterranean Sea). Aquat Living Resour 15:343–350

    Article  Google Scholar 

  • Jennings S, Renones O, Morales-Nin B, Polunin NVC, Moranta J, Coll J (1997) Spatial variation in the 15N and 13C stable isotope composition of plants, invertebrates and fishes on Mediterranean reefs: implications for the study of trophic pathways. Mar Ecol Prog Ser 146:109–116

    Article  Google Scholar 

  • Jobling M (1981) The influences of feeding on the metabolic rate of fishes: a short review. J Fish Biol 18:385–400

    Article  Google Scholar 

  • Kupfer A, Langel R, Scheu S, Himstedt W, Maraun M (2006) Trophic ecology of a tropical aquatic and terrestrial food web: insights from stable isotopes (15N). J Trop Ecol 22:469–476

    Article  Google Scholar 

  • Lapointe BE, Barile PJ, Matzie WR (2004) Anthropogenic nutrient enrichment of seagrass and coral reef communities in the lower Florida Keys: discrimination of local versus regional nitrogen sources. J Exp Mar Biol Ecol 208:23–58

    Article  Google Scholar 

  • Marguillier S, Van der Velde G, Dehairs F, Hemminga MA, Rajagopal S (1997) Trophic relationships in an inter-linked mangrove-seagrass ecosystem as traced by δ13C and δ15N. Mar Ecol Prog Ser 151:115–121

    Article  CAS  Google Scholar 

  • McGlathery KJ (1995) Nutrient and grazing influences on a subtropical seagrass community. Mar Ecol Prog Ser 122:239–252

    Article  Google Scholar 

  • McGlathery KJ (2001) Macroalgal blooms contribuye to the decline of seagrass in nutrient-enriched coastal waters. J Phycol 37:453–456

    Article  Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and animal age. Geochim Cosmoch Acta 48:1135–1140

    Article  CAS  Google Scholar 

  • Oelbermann K, Scheu S (2002) Stable isotope enrichment (δ15N and δ13C) in a generalist predator (Pardosa lugubris, Araneae: Lycosidae): effects of prey quality. Oecologia 130:337–344

    Article  Google Scholar 

  • Phillips DL, Koch PL (2002) Incorporating concentration dependence in stable isotope mixing models. Oecologia 130:114–125

    Google Scholar 

  • Pinna S, Pais A, Chessa L, Sechi N, Ceccherelli G (2009) Spatial variation of Paracentrotus lividus and Sarpa salpa herbivory on Posidonia oceanica seagrass meadows. Estuar Coast Shelf Sci 84(1):21–27

    Article  Google Scholar 

  • Pinnegar JK, Polunin NVC (2000) Contributions of stable-isotope data to elucidating food webs of Mediterranean rocky fishes. Oecologia 122:399–409

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Prado P (2007) Magnitude of herbivory in Posidonia oceanica and factors responsible for spatial variation. Ph.D.thesis, Univ of Barcelona

  • Prado P, Tomas F, Alcoverro T, Romero J (2007a) Extensive direct measurements of Posidonia oceanica defoliation confirm the importance of herbivory in temperate seagrass meadows. Mar Ecol Prog Ser 340:63–71

    Article  Google Scholar 

  • Prado P, Alcoverro T, Martínez-Crego B, Vergés A, Pérez M, Romero J (2007b) Macrograzers strongly influence patterns of epiphytic assemblages in seagrass meadows. J Exp Mar Biol Ecol 350:130–143

    Article  Google Scholar 

  • Robbins CT, Felicity LA, Sponheimer M (2005) The effect of dietary protein quality on nitrógeno isotope discrimination in mammals and birds. Oecologia 144:534–540

    Article  PubMed  Google Scholar 

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162

    Article  PubMed  Google Scholar 

  • Romero J, Martínez-Crego B, Alcoverro T, Pérez M (2007) A multivariate index based on the seagrass Posidonia oceanica (POMI) to assess ecological status of coastal waters under the water framework directive (WFD). Mar Poll Bull 55:196–204

    Article  CAS  Google Scholar 

  • Steele KW, Daniel RM (1978) Fractionation of nitrogen isotopes by animals: a further complication to the use of variations in the natural abundance of 15N for tracer studies. J Agric Sci 90:7–9

    Article  CAS  Google Scholar 

  • Sutoh M, Koyama T, Yoneyama T (1987) Variations of natural 15N abundances in the tissues and digesta of domestic animals. Radioisotopes 36:74–77

    CAS  PubMed  Google Scholar 

  • Sweeting CJ, Barry JT, Polunin NVC, Jennings S (2007) Effects of body size and environment of diet-tissue δ13C fractionation in fishes. J Exp Mar Biol Ecol 352:165–176

    Article  Google Scholar 

  • Tenore KR (1977) Growth of Capitella capitata cultured on various levels of detritus derived from different sources. Limnol Oceanogr 22:936–941

    Article  Google Scholar 

  • Tomas F, Turon X, Romero J (2005) Seasonal and small-scale spatial variability of herbivory pressure on the temperate seagrass Posidonia oceanica. Mar Ecol Prog Ser 301:95–107

    Article  Google Scholar 

  • Tomas F, Alvarez-Cascos D, Turon X, Romero J (2006) Differential element assimilation by sea urchins Paracentrotus lividus in seagrass beds: implications for trophic interactions. Mar Ecol Prog Ser 306:125–131

    Article  Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer diet 15N enrichment: a meta-analysis. Oecologia 136:169–182

    Article  PubMed  Google Scholar 

  • Vanderklift MA, Kendrick GA, Smit AJ (2006) Differences in trophic position among sympatric sea urchin species. Estuar Coast Shelf Sci 66:291–297

    Article  Google Scholar 

  • Velimirov B (1984) Grazing of Sarpa salpa (L.) on Posidonia oceanica and utilization of soluble compounds. In: Boudouresque CF, de Grissac J, Olivier J (eds) International workshop Posidonia oceanica beds, vol 1. GIS Posidonie publ, France, pp 381–387

    Google Scholar 

  • Verlaque M (1981) Preliminary data on some Posidonia oceanica feeders. Rapp Comm Int Mer Medit 27:201–202

    Google Scholar 

  • Vizzini S, Mazzola A (2004) Stable isotope evidence for the environmental impact of a land-based fish farm in the western Mediterranean. Mar Poll Bull 49:61–70

    Article  CAS  Google Scholar 

  • Wear DJ, Sullivan MJ, Moore AD, Millie DF (1999) Effects of water-column enrichment on the production dynamics of three seagrass species and their epiphytic algae. Mar Ecol Prog Ser 179:201–213

    Article  Google Scholar 

  • Williams SL (1988) Thalassia testudinum productivity and grazing by green turtles in a highly disturbed seagrass bed. Mar Biol 98:447–455

    Article  Google Scholar 

  • Wolf N, Carleton SA, Martínez del Rio C (2009) Ten years of experimental animal isotopic ecology. Funct Ecol 23:17–26

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a FI scholarship from the Departament d’Universitats, Recerca i Societat de la Informació (DURSI, Generalitat de Catalunya) and CGL2007-66771-C02-01/CGL2009-12562 grants from the Spanish Ministry of Science and Technology. Isotope and element analyses were performed at the Serveis Científico-Tècnics de la Universitat de Barcelona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Prado.

Additional information

Communicated by S. D. Connell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prado, P., Alcoverro, T. & Romero, J. Influence of nutrients in the feeding ecology of seagrass (Posidonia oceanica L.) consumers: a stable isotopes approach. Mar Biol 157, 715–724 (2010). https://doi.org/10.1007/s00227-009-1355-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1355-2

Keywords

Navigation