Skip to main content
Log in

Change in zooxanthellae and mucocyte tissue density as an adaptive response to environmental stress by the coral, Montastraea annularis

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Results from controlled in situ experimentation conducted on the leeward reef tract of Curaçao, Netherlands Antilles, indicate that the coral Montastraea annularis exhibits a complex, yet consistent, cellular response to increasing sea surface temperature (SST) and decreasing irradiance. This was determined by simultaneously quantifying and tracking the tissue density of zooxanthellae and mucocytes using a novel technique that integrates the lectin histochemical stain wheat germ agglutinin (WGA) with high-resolution (200 nm) optical epifluorescence microscopy. Coral colonies growing at 6-m water depth (WD) and an irradiance of 100.2 ± 6.5 μmol m−2 s−1 were treated with a shading experiment for 11 days that reduced irradiance to 34.9 ± 6.6, 72.0 ± 7.0 and 90.1 ± 4.2 μmol m−2 s−1, respectively. While a significant decrease in the density of both zooxanthellae and mucocytes were observed at all shade levels, the largest reduction occurred between the natural non-shaded control (44,298 ± 3,242 zooxanthellae cm−2; 4,853 ± 346 mucocytes cm−2) and the highest shading level (13,982 ± 1,961 zooxanthallae cm−2; 2,544 ± 372.9 mucocytes cm−2). Colonies were also sampled during a seasonal increase in SST of 1.5°C, where the density of zooxanthellae was significantly lower (from 54,710 ± 1,755 to 34,322 ± 2,894 cells cm−2) and the density of mucocytes was significantly higher (from 6,100 ± 304 to 29,658 ± 3,937 cells cm−2). These observations of coral cellular response to environmental change provide evidence to support new hypotheses for coral survival and the complex role played by mucus in feeding, microbial associations and resilience to increasing SST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253

    Article  PubMed  Google Scholar 

  • Battey JF, Patton JS (1984) A re-evaluation of the role of glycerol in carbon translocation in zooxanthellae–coelenterate symbiosis. Mar Biol 79:27–38

    Article  CAS  Google Scholar 

  • Benson AA, Muscatine L (1974) Wax in coral mucus: energy transfer from corals to reef fishes. Limnol Oceanogr 19:810–814

    Google Scholar 

  • Bourne DG, Munn CB (2005) Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ Microbiol 7:1162–1174

    Article  PubMed  CAS  Google Scholar 

  • Bourne D, Iida Y, Uthicke S, Smith-Keune C (2008) Changes in coral-associated microbial communities during a bleaching event. Int Soc Microb Ecol 2:350–363

    CAS  Google Scholar 

  • Brown BE, Bythell JC (2005) Perspectives on mucus secretion by reef corals. Mar Ecol Prog Ser 296:291–309

    Article  CAS  Google Scholar 

  • Colon-Urban R, Oppenheim JD (1990) Seasonally occurring lectins from the bryzoan Bugula neritina. J Exp Zool 254:138–143

    Article  PubMed  CAS  Google Scholar 

  • Cooney RP, Pantos O, Le Tissier MDA, Barer MR, O’Donnell AG, Bythell JC (2002) Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. Environ Microbiol 4:401–413

    Article  PubMed  Google Scholar 

  • Crossland CJ (1987) In situ release of mucus and DOC-lipid from the corals Acropora variabilis and Stylophora pistillata in different light regimes. Coral Reefs 6:35–42

    Article  CAS  Google Scholar 

  • Crossland CJ, Barnes DJ, Borowitzka MA (1980) Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar Biol 60:81–90

    Article  CAS  Google Scholar 

  • Davies PS (1984) The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2:181–186

    Google Scholar 

  • Davies PS (1991) Effect of daylight variations on the energy budgets of shallow-water corals. Mar Biol 108:137–144

    Article  Google Scholar 

  • Downs CA, Mueller E, Phillips S, Fauth JE, Woodley CM (2000) A molecular biomarker system for assessing the health of coral Montastraea faveolata during heat stress. Mar Biotechol 2:533–544

    Article  CAS  Google Scholar 

  • Dubinsky Z, Stambler N, Ben-Zion M, McCloskey LR, Muscatine L, Falkowski PG (1990) The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proc R Soc London B 239:231–246

    Article  Google Scholar 

  • Edmunds PJ, Davies PS (1986) An energy budget for Porites porites (Scleractinia). Mar Biol 92:339–347

    Article  Google Scholar 

  • Ferrier-Pages C, Allemand D, Gattuso JP, Jaubert J, Rassoulzadegan F (1998) Microheterotrophy in the zooxanthellate coral Stylophora pistillata: effects of light and ciliate density. Limnol Oceanogr 43:1639–1648

    Article  CAS  Google Scholar 

  • Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45:677–685

    CAS  Google Scholar 

  • Frias-Lopez J, Zerkle AL, Bonheyo GT, Fouke BW (2002) Partitioning of bacterial communities between seawater and health, black band diseased, and dead coral surfaces. Appl Environ Microbiol 68:2214–2228

    Article  PubMed  CAS  Google Scholar 

  • Gardner GA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    Article  PubMed  CAS  Google Scholar 

  • Glynn PW, D’Croz LD (1990) Experimental evidence for high-temperature stress as the cause of El Nino-coincident coral mortality. Coral Reefs 8:181–191

    Article  Google Scholar 

  • Glynn PW, Perez M, Gilchrist SL (1985) Lipid decline in stressed corals and their crustacean symbionts. Biol Bull 168:276–284

    Article  CAS  Google Scholar 

  • Goldberg WM (2002) Feeding behavior, epidermal structure and mucus cytochemistry of the scleractinian Mycetophyllia reesi, a coral without tentacles. Tissue Cell 34:232–245

    Article  PubMed  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  PubMed  CAS  Google Scholar 

  • Hoegh-Guldberg O, Salvat B (1995) Periodic mass bleaching and elevated sea temperatures: bleaching of outer reef slope communities in Moorea, French Polynesia. Mar Ecol Prog Ser 121:181–190

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2007) Intergovernmental Panel on Climate Change 2007. IPPC Fourth Assessment Report

  • Jefcoat AM, Hotchkiss JA, Gerber V, Harkema JA, Basbaum CB, Robinson NE (2001) Persistent mucin glycoprotein alterations in equine recurrent airway obstruction. Am J Physiology—Lung Cell Mol Physiol 281:704–712

    Google Scholar 

  • Johannes RE, Wiebe WJ (1970) Method for determination of coral tissue biomass and composition. Limnol Oceanogr 15:822–824

    Google Scholar 

  • Klaus JS, Frias-Lopez J, Bonheyo GT, Heikoop JM, Fouke BW (2005) Bacterial communities inhabiting the healthy tissues of two Caribbean reef corals: interspecific and spatial variation. Coral Reefs 23:129–137

    Article  Google Scholar 

  • Klaus JS, Janse I, Heikoop JM, Sanford RA, Fouke BW (2007) Coral microbial communities, zooxanthellae and mucus along gradients of seawater depth and coastal pollution. Environ Microbiol 9:1291–1305

    Article  PubMed  CAS  Google Scholar 

  • Lasker HR (1979) Light-dependent activity patterns among reef corals: Montastraea cavernosa. Biol Bull 156:196–211

    Article  Google Scholar 

  • Lesser MP (1996) Oxidative stress causes bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192

    Article  Google Scholar 

  • Lesser MP, Shick JM (1989) Effects of irradiance and ultraviolet radiation on photo adaptation in the zooxanthellae of Aiptasia pallida: primary production, photoinhibition, and enzymatic defense against oxygen toxicity. Mar Biol 102:243–255

    Article  Google Scholar 

  • Marshall AT, Wright OP (1993) Confocal laser scanning light microscopy of the extra-thecal epithelia of undecalcified scleractinian corals. Cell Tissue Res 272:533–543

    Article  Google Scholar 

  • Matsuo K, Ota H, Akamatsu T, Sugiyama A, Katsuyama T (1997) Histochemistry of the surface mucous gel layer of the human colon. Gut 40:782–789

    Article  PubMed  CAS  Google Scholar 

  • Meikle P, Richards GN, Yellowless D (1987) Structural determination of the oligosaccharide side chains from a glycoprotein isolated from the mucus of the coral Acropora formosa. J Biol Chem 262:16941–16947

    PubMed  CAS  Google Scholar 

  • Meikle P, Richards GN, Yellowless D (1988) Structural investigations on the mucus from six species of coral. Mar Biol 99:187–193

    Article  CAS  Google Scholar 

  • Meyer W, Bollhorn M, Stede M (2000) Aspects of general antimicrobial properties of skin secretions in the common seal Phoca vitulina. Dis Aquat Org 41:77–79

    Article  PubMed  CAS  Google Scholar 

  • Meyer W, Seegers U, Schnapper A, Neuhaus H, Himstedt W, Toepfer-Petersen E (2007) Possible antimicrobial defense by free sugars on the epidermal surface of aquatic vertebrates. Aquat Biol 1:167–175

    Article  CAS  Google Scholar 

  • Mora C (2008) A clear human footprint in the coral reefs of the Caribbean. Proc R Soc B 275:767–773

    Article  PubMed  Google Scholar 

  • Muscatine L, Falkowski PG, Porter JW, Dubinsky Z (1984) Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc Lond Ser B 222:181–202

    Article  CAS  Google Scholar 

  • NRC (2007) National Research Council. Surface reconstructions for the last 2,000 years. Committee on surface reconstructions for the last 2,000 years, National Research Council. National Academy Press, Washington DC

  • Peters EC (1984) A survey of cellular reactions to environmental stress and disease in Caribbean scleractinian corals. Helgo. Meeresunters.:113–137

  • Peters EC, Pilson MEQ (1985) A comparative study of the effects of sedimentation on symbiotic and asymbiotic colonies of the coral Astrangia danae Milne Edwards and Haime 1849. J Exp Biol Ecol 92:215–230

    Article  Google Scholar 

  • Peters EC, Meyers PA, Yevich PP, Blake NJ (1981) Bioaccumulation and histopathological effects of oil on a stony coral. Mar Pollut Bull 12:333–339

    Article  CAS  Google Scholar 

  • Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14

    Article  CAS  Google Scholar 

  • Rowher F, Breitbart M, Jara J, Azam F, Knowlton N (2001) Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs 20:85–95

    Article  Google Scholar 

  • Rowher F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Stanley, GD (2001) The history and sedimentology of ancient reef ecosystems. In: Landman NH, Jones DS (eds) Topics in geobiology, vol 17. Kluwer Academic/Plenum Publishers, 458 p

  • Szmant AM, Gassman NJ (1990) The effects of prolonged bleaching on the tissue biomass and reproduction of the reef coral Montastraea annularis. Coral Reefs 8:217–224

    Article  Google Scholar 

  • Trench RK (1971) The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. II. Liberation of fixed 14C by zooxanthellae in vitro. Proc R Soc Lond Ser B 177:237–250

    Article  CAS  Google Scholar 

  • Vargas-Ángel B, Peters EC, Kramarsky-Winter E, Gilliam DS, Dodge RE (2007) Cellular reactions to sedimentation and temperature stress in the Caribbean coral Montastarea cavernosa. J Invertebr Pathol 95:140–145

    Article  PubMed  Google Scholar 

  • Warner M, Chilcoat G, McFarland F, Fitt W (2002) Seasonal fluctuations in the photosynthetic capacity of photosystems II in symbiotic dinoflagellates in Caribbean reef-building coral Montastraea. Mar Biol 141:31–38

    Article  CAS  Google Scholar 

  • Wild C, Huettel M, Klueter A, Kremb SG, Rasheed MYM, Jorgensen BB (2004) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70

    Article  PubMed  CAS  Google Scholar 

  • Winters G, Loya Y, Beer S (2006) In situ measured seasonal variations in Fv/Fm of two common Red Sea corals. Coral Reefs 25:593–598

    Article  Google Scholar 

  • Zhang XS, Proctor GB, Garrett JR, Schulte BA, Shori DK (1994) Use of lectin probes on tissues and sympathetic saliva to study the glycoproteins secreted by rat submandibular glands. J Histochem Cytochem 42:1261–1269

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from the Office of Naval Research (N00014-00-1-0609), a UIUC Department of Geology Wanless Fellowship and UIUC Department of Geology Leighton and Roscoe fieldwork research grants. The authors wish to acknowledge Dr. Michael T. Kandianis, Cathy Kandianis and the late Dr. Roderick Macleod for their unending support, encouragement and critical conversations, which explored the boundaries of science and humanity. Carly Hill, Amanda Oehlert, Emily Wisseman, Dr. Roy Johnson, Dr. James S. Klaus and the CARMABI Marine Research Station staff are acknowledged for assistance in the field, laboratory and editing the manuscript. The anonymous reviewers of the manuscript are greatly appreciated for their comments and the care with which they reviewed the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan M. Piggot.

Additional information

Communicated by H. O. Pörtner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piggot, A.M., Fouke, B.W., Sivaguru, M. et al. Change in zooxanthellae and mucocyte tissue density as an adaptive response to environmental stress by the coral, Montastraea annularis . Mar Biol 156, 2379–2389 (2009). https://doi.org/10.1007/s00227-009-1267-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1267-1

Keywords

Navigation