Skip to main content
Log in

Genetic evidence fails to discriminate between Macroramphosus gracilis Lowe 1839 and Macroramphosus scolopax Linnaeus 1758 in Portuguese waters

  • Short Communication
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Fish belonging to the genus Macroramphosus are distributed throughout the Atlantic, Indian and Pacific oceans. Some authors consider this genus monotypic, Macroramphosus scolopax being the only valid species. Other authors consider (based on several morphological and ecological characters) that another species (Macroramphosus gracilis) exists and occurs frequently in sympatry with the first one. Intermediate forms are also reported in literature. In this paper, using the mitochondrial control region and the nuclear first S7 intron markers, we failed to find genetic differences between individuals considered to belong to both species as well as the intermediate forms. Our results suggest that in the northeastern Atlantic, Macroramphosus is represented by a single species, M. scolopax, with different morphotypes interbreeding in the sampling areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Assis CA (1992) On the systematics of Macrorhamphosus scolopax (Linnaeus, 1758) and Macrorhamphosus gracilis (Lowe, 1839). I. A preliminary biometrical approach. Bol Soc Port Cienc Nat (2nd Sér.) 25:5–19

    Google Scholar 

  • Bilecenoglu M (2006) Status of the genus Macroramphosus (Syngnathiformes:Centriscidae) in the eastern Mediterranean Sea. Zootaxa 1273:55–64

    Google Scholar 

  • Chow S, Hazama K (1998) Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol Ecol 7:1247–1263. doi:https://doi.org/10.1046/j.1365-294x.1998.00406.x

    Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659. doi:https://doi.org/10.1046/j.1365-294x.2000.01020.x

    Article  CAS  PubMed  Google Scholar 

  • Domingues VS, Santos RS, Brito A, Alexandrou M, Almada VC (2007) Mitochondrial and nuclear markers reveal isolation by distance and effects of Pleistocene glaciations in the northeastern Atlantic and Mediterranean populations of the white seabream (Diplodus sargus, L.). J Exp Mar Biol Ecol 346:102–113. doi:https://doi.org/10.1016/j.jembe.2007.03.002

    Article  CAS  Google Scholar 

  • Ehrich S (1976) Zur Taxonomie, Ökologie und Wachstum von Macroramphosus scolopax (Linnaeus, 1758) (Pisces, Syngnathiformes) aus dem subtropischen. Ber Deut Wiss Komm 24:251–266

    Google Scholar 

  • Ehrich S (1986) Macroramphosidae. In: Whitehead P, Bauchot M, Hureau J, Nielsen J, Tortonese E (eds) Fishes of the northeastern Atlantic and the Mediterranean (FNAM), vol 2. UNESCO, Paris, p 627

    Google Scholar 

  • Excoffier L, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    Article  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol Int J Org Evol 39:783–791. doi:https://doi.org/10.2307/2408678

    Article  Google Scholar 

  • Lopes M, Murta AG, Cabral HN (2006) Discrimination of snipefish Macroramphosus species and boarfish Capros aper morphotypes through multivariate analysis of body shape. Helgol Mar Res 60:18–24. doi:https://doi.org/10.1007/s10152-005-0010-7

    Article  Google Scholar 

  • Marques V, Chaves C, Morais A, Cardador F, Stratoudakis Y (2005) Distribution and abundance of snipefish (Macroramphosus spp.) of Portugal (1998–2003). Sci Mar 69:563–576

    Article  Google Scholar 

  • Matthiessen B, Fock H, von Westernhagen H (2003) Evidence for two sympatric species of snipefishes Macroramphosus spp. (Syngnathiformes, Centriscidae) on Great Meteor Seamount. Helgol Mar Res 57:63–72

    Google Scholar 

  • McPhail JD (1994) Speciation and the evolution of reproductive isolation in the sticklebacks (Gasterosteus) of southwestern British Columbia. In: Bell MA, Foster SA (eds) The evolutionary biology of the threespine stickleback. Oxford Science Publications, Oxford, pp 399–437

    Google Scholar 

  • Miyazaki E, Sasaki K, Mitani T, Ishida M, Uehara S (2004) The occurrence of two species of Macroramphosus (Gasterosteiformes:Macroramphosidae) in Japan: morphological and ecological observations on larvae, juveniles, and adults. Ichthyol Res 51:256–262. doi:https://doi.org/10.1007/s10228-004-0227-5

    Article  Google Scholar 

  • Mohr E (1937) Revision der centriscidae (Acanthopterygii, Centrisciformes). Dana Report 13:1–69

    Google Scholar 

  • Nelson JS (2006) Fishes of the world, 4th edn. Wiley, New York

    Google Scholar 

  • Oliveira RF, Almada VC, Gil MF (1993) The reproductive behavior of the longspine snipefish Macrorhamphosus scolopax (Syngnathiformes, Macrorhamphosidae). Environ Biol Fishes 36:337–343. doi:https://doi.org/10.1007/BF00012410

    Article  Google Scholar 

  • Østbye K, NÆsje TF, Bernatchez L, Sandlund OT, Hindar K (2005) Morphological divergence and origin of sympatric populations of European whitefish (Coregonus lavaretus L.) in Lake Femund, Norway. J Evol Biol 18:683–702. doi:https://doi.org/10.1111/j.1420-9101.2004.00844.x

    Article  PubMed  Google Scholar 

  • Ostellari L, Bargelloni L, Penzo E, Patarnello P, Patarnello T (1996) Optimization of single-strand conformation polymorphism and sequence analysis of the mitochondrial control region in Pagellus bogaraveo (Sparidae, Teleostei): rationalized tools in fish population biology. Anim Genet 27:423–427

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution (v.3.6). Bioinformatics 14:817–818. doi:https://doi.org/10.1093/bioinformatics/14.9.817

    Article  CAS  PubMed  Google Scholar 

  • Quéro JC, Hureau JC, Karrer C, Post A, Saldanha L (eds) (1990) Clofeta I-III, checklist of the fishes of the eastern tropical Atlantic. Junta Nacional de Investigação Cientifica e Tecnológica, Lisboa

    Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (* and other methods) version 4.0. Sinauer Associated, Sunderland, MA

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882. doi:https://doi.org/10.1093/nar/25.24.4876

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the skilful technical assistance provided by S. Chenu and G.F Silva. This study was funded by the Pluriannual Program (FCT, UI&D 331/94-ISPA and CCMAR, partially FEDER funded). C. Sousa-Santos was also funded by a postdoctoral grant, SFRH/BPD/29774/2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Isabel Robalo.

Additional information

Communicated by Martin Ian Tayler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robalo, J.I., Sousa-Santos, C., Cabral, H. et al. Genetic evidence fails to discriminate between Macroramphosus gracilis Lowe 1839 and Macroramphosus scolopax Linnaeus 1758 in Portuguese waters. Mar Biol 156, 1733–1737 (2009). https://doi.org/10.1007/s00227-009-1197-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1197-y

Keywords

Navigation