Skip to main content
Log in

Eye development in southern calamary, Sepioteuthis australis, embryos and hatchlings

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Eye development, optical properties and photomechanical responses were examined in embryos and hatchlings of the southern calamary, Sepioteuthis australis. This species occurs in shallow coastal waters in Australia and New Zealand, and the egg masses were collected in October and December 2004 from Great Oyster Bay, Tasmania. At the earliest developmental stage the eye of the squid was comprised of a hemispherical cup of undifferentiated neural retina, while presumptive iris cell layers and lentigenic precursor cells enclosed a posterior eye chamber. Differentiation of the proximal and distal processes was observed in correspondence with the cornea development and lens crystallization, and occurred before differentiation of the neural retina, which was complete prior to hatching. Longer photoreceptor distal processes were first observed just prior to hatching in the dorsal-posterior retina. After hatching, this difference was much more evident and higher photoreceptor density was found in the central retina. This indicates that the eye of S. australis at this age uses different retina areas for different visual tasks. Optical sensitivity and resolution suggest that juvenile S. australis are diurnal. This study also found functional photomechanical responses of visual screening pigment migration and pupil constriction in S. australis embryos, although complete functionality of the pupil at this stage was uncertain. However, the pupils of squid aged 2 days closed almost completely under bright conditions, showing that photomechanical responses were highly developed in the juvenile squid. These findings indicate that squid embryos are able to perceive visual stimulation, suggesting an early reliance on vision for survival after hatching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali MA (1972) Action spectra of retinomotor and pupillary responses. Vision Res 12:1199. doi:https://doi.org/10.1016/0042-6989(72)90107-1

    Article  CAS  Google Scholar 

  • Arnold JM (1965) Normal embryonic stages of the squid, Loligo pealii (Lesueur). Biol Bull 128:23–32. doi:https://doi.org/10.2307/1539386

    Article  Google Scholar 

  • Blaxter JHS, Staines M (1970) Pure-cone retinae and retina-motor responses in larval teleosts. J Mar Biol Assoc UK 50:449–460

    Article  Google Scholar 

  • Boletzky SV (2003) Biology of early life stages in cephalopod molluscs. Adv Mar Biol 44:143–203. doi:https://doi.org/10.1016/S0065-2881(03)44003-0

    Article  Google Scholar 

  • Bozzano A, Catalán IA (2002) Ontogenetic changes in the retinal topography of the European hake, Merluccius merluccius: implications for feeding and depth distribution. Mar Biol (Berl) 141:549–559. doi:https://doi.org/10.1007/s00227-002-0840-7

    Article  Google Scholar 

  • Bozzano A, Collin SP (2000) Retinal ganglion cell topography in elasmobranchs. Brain Behav Evol 55:191–208. doi:https://doi.org/10.1159/000006652

    Article  CAS  Google Scholar 

  • Budelmann B, Schipp R, Boletzky SV (1997) Cephalopoda. In: Harrison FW, Kohn AJ (eds) Microscopic anatomy of invertebrates, vol 6A. Wiley-Liss, New York, pp 119–414

    Google Scholar 

  • Burnside B, Evans M, Fletcher RT, Chader GJ (1982) Induction of dark-adaptive retinomotor movement (cell elongation) in teleost retinal cones by cyclic adenosine 3′, 5′-monophosphate. J Gen Physiol 79:759–774. doi:https://doi.org/10.1085/jgp.79.5.759

    Article  CAS  Google Scholar 

  • Chen DS, Van Dykhuizen G, Hodge J, Gilly WF (1996) Ontogeny of copepod predation in juvenile squid (Loligo opalescens). Biol Bull 190:69–81. doi:https://doi.org/10.2307/1542676

    Article  CAS  Google Scholar 

  • Collin SP, Pettigrew JD (1988) Retinal topography in reef teleosts. II. Some species with prominent horizontal streak and high-density areae. Brain Behav Evol 31:283–295. doi:https://doi.org/10.1159/000116595

    Article  CAS  Google Scholar 

  • Darmaillacq A-S, Lesimple C, Dickel L (2008) Embryonic visual learning in the cuttlefish, Sepia officinalis. Anim Behav 76:131–134. doi:https://doi.org/10.1016/j.anbehav.2008.02.006

    Article  Google Scholar 

  • Daw NW, Pearlman AL (1974) Pigment migration and adaptation in the eye of the squid, Loligo pealei. J Gen Physiol 63:22–36. doi:https://doi.org/10.1085/jgp.63.1.22

    Article  CAS  Google Scholar 

  • Douglas RH, Partridge JC, Marshall NJ (1998) The eyes of deep-sea fish I: lens pigmentation, tapeta and visual pigments. Prog Retin Eye Res 17:597–636. doi:https://doi.org/10.1016/S1350-9462(98)00002-0

    Article  CAS  Google Scholar 

  • Douglas RH, Williamson R, Wagner H-J (2005) The pupillary response of cephalopods. J Exp Biol 208:261–265. doi:https://doi.org/10.1242/jeb.01395

    Article  CAS  Google Scholar 

  • Evans BI, Browman HI (2004) Variation in the development of the fish retina. In: Govoni JJ (ed) Development of form and function in fishes and the question of larval adaptation. Am Fish Soc Symp 40:145–166

  • Gleadall IA, Ohtsu K, Gleadall E, Tsukahara Y (1993) Screening-pigment migration in the octopus retina includes control by dopaminergic efferents. J Exp Biol 185:1–16

    CAS  Google Scholar 

  • Groeger G, Cotton PA, Williamson R (2005) Ontogenetic changes in the visual acuity of Sepia officinalis measured using the optomotor response. Can J Zool Rev Can Zool 83:274–279. doi:https://doi.org/10.1139/z05-011

    Article  Google Scholar 

  • Haacke C, Heß M, Melzer RR, Gebhart H, Smola U (2001) Fine structure and development of the retina of the grenadier anchovy Coilia nasus (Engraulididae, Clupeiformes). J Morphol 248:41–55. doi:https://doi.org/10.1002/jmor.1019

    Article  CAS  Google Scholar 

  • Hagins WA, Liebman PA (1962) Light-induced pigment migration in the squid retina. Biol Bull 123:498

    Google Scholar 

  • Hanlon RT, Messenger JB (1996) Cephalopod behaviour. Cambridge University Press, Cambridge

    Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting lifestyles: comparative optics and retinal organization. In: Austrum H, Joung R, Loewenstein WR, MacKay DM, Teuber HL (eds) Handbook of sensory physiology, vol VII/5. Springer, New York, pp 613–756

    Google Scholar 

  • Inada H (1996) Retinomotor response and retinal adaptation of Japanese common squid Todarodes pacificus at capture with jigs. Fish Sci 62:663–669

    Article  CAS  Google Scholar 

  • Johnsen S (2000) Transparent animals. Sci Am 280:80–89

    Article  Google Scholar 

  • Johnson C (2006) The digestive and visual development of the juvenile cephalopods Sepioteuthis australis and Euprymna tasmanica. Ph.D. thesis, University of Tasmania

  • Kier CK, Chamberlain SC (1990) Dual control for screening pigment movement in photoreceptors of the Limulus lateral eye: circadian efferent input and light. Vis Neurosci 4:237–255

    Article  CAS  Google Scholar 

  • Kvenseth AM, Pittman K, Helvik JV (1996) Eye development in Atlantic halibut (Hippoglossus hippoglossus): differentiation and development of the retina from early yolk sac stages through metamorphosis. Can J Fish Aquat Sci 53:2524–2532. doi:https://doi.org/10.1139/cjfas-53-11-2524

    Article  Google Scholar 

  • Land MF (1981) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology. Springer, Berlin, pp 471–592

    Google Scholar 

  • Land MF (1984) Molluscs. In: Ali MA (ed) Photoreception and vision in invertebrate. Plenum Press, New York, pp 699–725

    Chapter  Google Scholar 

  • Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press Inc, New York

    Google Scholar 

  • Lee PG, Turk PE, Yang WT, Hanlon RT (1994) Biological characteristics and biomedical applications of the squid Sepioteuthis lessoniana cultured through multiple generations. Biol Bull 186:328–341. doi:https://doi.org/10.2307/1542279

    Article  CAS  Google Scholar 

  • Mäthger LM, Denton EJ (2001) Reflective properties of iridophores and fluorescent ‘eyespots’ in the loliginid squid Alloteuthis subulata and Loligo vulgaris. J Exp Biol 204:2103–2118

    PubMed  Google Scholar 

  • Messenger JB (1981) Comparative physiology of vision in molluscs. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6C. Springer, Berlin, pp 93–200

    Google Scholar 

  • Moltschaniwskyj NA, Pecl GT (2003) Small-scale spatial and temporal patterns of egg production by the temperate loliginid squid Sepioteuthis australis. Mar Biol (Berl) 142:509–516

    Article  Google Scholar 

  • Moltschaniwskyj NA, Pecl GT (2007) Spawning aggregations of squid (Sepioteuthis australis) populations: a continuum of ‘microcohorts’. Rev Fish Biol Fish 17:183–195. doi:https://doi.org/10.1007/s11160-006-9025-7

    Article  Google Scholar 

  • Moltschaniwskyj NA, Steer MA (2004) Spatial and seasonal variation in reproductive characteristics and spawning of southern calamary (Sepioteuthis australis): spreading the mortality risk. ICES J Mar Sci 61:921–927. doi:https://doi.org/10.1016/j.icesjms.2004.06.007

    Article  Google Scholar 

  • Moltschaniwskyj NA, Hall K, Lipinski MR, Marian JEAR, Nishiguchi M, Sakai M, Shulman DJ, Sinclair B, Sinn DL, Staudinger M, Van Gelderen R, Villanueva R, Warnke K (2007) Ethical and welfare considerations when using cephalopods as experimental animals. Rev Fish Biol Fish 17:455–476. doi:https://doi.org/10.1007/s11160-007-9056-8

    Article  Google Scholar 

  • Muntz WRA (1977) Pupillary response of cephalopods. Symp Zool Soc Lond 38:277–285

    Google Scholar 

  • Muntz WRA, Gwyther J (1988) Visual acuity in Octopus pallidus and Octopus australis. J Exp Biol 134:119–129

    Google Scholar 

  • Munz FW, McFarland WN (1977) Evolutionary adaptations of fishes to the photic environment. In: Crescitelli F (ed) Handbook of sensory physiology, vol VI/5. Springer, Berlin, pp 193–274

    Google Scholar 

  • Neave DA (1984) The development of visual acuity in larval plaice (Pleuronectes platessa L.) and turbot (Scophthalmus maximus L.). J Exp Mar Biol Ecol 78:167–175. doi:https://doi.org/10.1016/0022-0981(84)90077-7

    Article  Google Scholar 

  • Nicol JAC (1989) The eyes of fishes. Oxford University Press, Oxford

    Google Scholar 

  • Nixon M, Mangold K (1998) The early life of Sepia officinalis, and the contrast with that of Octopus vulgaris (Cephalopoda). J Zool (Lond) 245:407–421. doi:https://doi.org/10.1111/j.1469-7998.1998.tb00115.x

    Article  Google Scholar 

  • Nixon M, Young JZ (2003) The brains and lives of cephalopods. Oxford University Press, Oxford

    Google Scholar 

  • Norman M (2000) Cephalopods. A world guide. Conch Books Press, Hackenheim

    Google Scholar 

  • Packard A (1969) Visual acuity and eye growth in Octopus vulgaris (Lamarck). Monitore Zool Ital (N.S.) 3:19–32

    Google Scholar 

  • Packard A (1972) Cephalopods and fish: the limit of convergence. Biol Rev Camb Philos Soc 47:241–307. doi:https://doi.org/10.1111/j.1469-185X.1972.tb00975.x

    Article  CAS  Google Scholar 

  • Pankhurst PM, Eagar R (1996) Changes in visual morphology through life history stages of the New Zealand snapper, Pagrus auratus. N Z J Mar Freshw Res 30:79–90

    Article  Google Scholar 

  • Pankhurst PM, Pankhurst NW, Montgomery JC (1993) Comparison of behavioural and morphological measures of visual acuity during ontogeny in a teleost fish, Forterygion varium, Tripterygiidae (Forster, 1801). Brain Behav Evol 42:178–188. doi:https://doi.org/10.1159/000114151

    Article  CAS  Google Scholar 

  • Pecl G (2001) Flexible reproductive strategies in tropical and temperate Sepioteuthis squids. Mar Biol (Berl) 138:93–101. doi:https://doi.org/10.1007/s002270000452

    Article  Google Scholar 

  • Pecl GT (2004) The in situ relationships between season of hatching, growth and condition in the southern calamary, Sepioteuthis australis. Mar Freshw Res 55:429–438. doi:https://doi.org/10.1071/MF03150

    Article  Google Scholar 

  • Pecl GT, Moltschaniwskyj NA (2006) Life history of a short-lived squid (Sepioteuthis australis): resource allocation as a function of size, growth, maturation, and hatching season. ICES J Mar Sci 63:995–1004

    Google Scholar 

  • Schaeffel F, Murphy CJ, Howland HC (1999) Accommodation in the cuttlefish (Sepia officinalis). J Exp Biol 202:3127–3134

    CAS  PubMed  Google Scholar 

  • Sivak JG, West JA, Campbell MC (1994) Growth and optical development of the ocular lens of the squid (Sepioteuthis lessoniana). Vision Res 34:2177–2187. doi:https://doi.org/10.1016/0042-6989(94)90100-7

    Article  CAS  Google Scholar 

  • Steer MA, Moltschaniwskyj NA, Gowland FC (2002) Temporal variability in embryonic development and mortality in the southern calamary Sepioteuthis australis: a field assessment. Mar Ecol Prog Ser 243:143–150. doi:https://doi.org/10.3354/meps243143

    Article  Google Scholar 

  • Steer MA, Moltschaniwskyj NA, Jordan AR (2003a) Embryonic development of southern calamary (Sepioteuthis australis) within the constraints of an aggregated egg mass. Mar Freshw Res 54:217–226. doi:https://doi.org/10.1071/MF02107

    Article  Google Scholar 

  • Steer MA, Pecl GT, Moltschaniwskyj NA (2003b) Are bigger calamary Sepioteuthis australis hatchlings more likely to survive? A study based on statolith dimensions. Mar Ecol Prog Ser 261:175–182. doi:https://doi.org/10.3354/meps261175

    Article  Google Scholar 

  • Suzuki T, Takahashi H (1988) Response of the retina of flying squid Sthenoteuthis oualaniensis (Lesson) to light changes. Bull Fac Fish Hokkaido Univ 39:21–26

    Google Scholar 

  • Suzuki T, Inada H, Takahashi H (1985) Retinal adaptation of Japanese common squid Todarodes pacificus Steenstrup to light changes. Bull Fac Fish Hokkaido Univ 36:191–199

    Google Scholar 

  • Sweeney AM, Steven HDH, Johnsen S (2007) Comparative visual acuity of coleoid cephalopods. Integr Comp Biol 47:808–814. doi:https://doi.org/10.1093/icb/icm092

    Article  Google Scholar 

  • Takayama T, Inada H, Watanabe T (1998) Retinomotor response and iris function of Neon Flying squid Ommastrephes bartrami to lighting. Nippon Suisan Gakkai Shi 64:631–635

    Article  Google Scholar 

  • Tasaki I, Nakaye T (1984) Rapid mechanical responses of the dark adapted squid retina to light pulses. Science 223:411–413. doi:https://doi.org/10.1126/science.6691153

    Article  CAS  Google Scholar 

  • Villanueva R, Nozais C, Boletzky SV (1996) Swimming behaviour and food searching in planktonic Octopus vulgaris Cuvier from hatching to settlement. J Exp Mar Biol Ecol 208:169–184. doi:https://doi.org/10.1016/S0022-0981(96)02670-6

    Article  Google Scholar 

  • Villanueva R, Moltschaniwskyj NA, Bozzano A (2007) Abiotic influences on embryo growth: statoliths as experimental tools in the squid early life history. Rev Fish Biol Fish 17:101–110. doi:https://doi.org/10.1007/s11160-006-9022-x

    Article  Google Scholar 

  • Warrant E (1999) Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vision Res 39:1611–1630. doi:https://doi.org/10.1016/S0042-6989(98)00262-4

    Article  CAS  Google Scholar 

  • Warrant E, Nilsson D-E (2006) Invertebrate vision. Cabridge University Press, New York

    Google Scholar 

  • Watanuki N, Kawamura G, Kaneuchi A, Iwashita T (2000) Role of vision in behaviour, visual field, and visual acuity of cuttlefish Sepia esculenta. Fish Sci 66:417–423. doi:https://doi.org/10.1046/j.1444-2906.2000.00068.x

    Article  CAS  Google Scholar 

  • Wentworth SL, Muntz WRA (1992) Development of the eye and optic lobe of Octopus. J Zool (Lond) 227:673–684

    Article  Google Scholar 

  • Yamamoto M, Takasu N, Uragami I (1985) Ontogeny of the visual system in the cuttlefish, Sepiella japonica.2. Intramembrane particles, histofluorescence, and electrical responses in the developing retina. J Comp Neurol 232:362–371. doi:https://doi.org/10.1002/cne.902320308

    Article  CAS  Google Scholar 

  • Yoshida MK, Ohtsu K, Nakaye T (1976) Development of the cuttlefish retina. In: Yamada E, Mishima S (eds) The structure of the eye. Maruzen, Tokyo, pp 215–221

    Google Scholar 

  • Young JZ (1963) Light- and dark- adaptation in the eyes of some cephalopods. Proc Zool Soc Lond 140:255–272

    Article  Google Scholar 

Download references

Acknowledgments

The authors are deeply grateful to Sue Reilly for her technical histological support at James Cook University. Keith Harrison, Stephen Leporati and Gretta Pecl (Tasmanian Aquaculture and Fisheries Institute) kindly provided unpublished data on the size of Octopus pallidus hatchlings shown in Table 3. We are grateful to the reviewers and the editor for their helpful suggestions and comments on the manuscript. The work undertaken by AB at the University of Tasmania and James Cook University was supported by a Postdoctoral Fellowship from the Spanish Ministry of Science (MECD). AB was also funded by the I3P framework of CSIC. Both sources of AB funds were co-financed by the European Social Foundation. RV was supported by the Spanish Researchers Mobility framework (MECD). PMP had a James Cook University Finfish Aquaculture and Emerging Species Research Advancement Program Grant. This work was supported by the University of Tasmania Merit Grants Scheme awarded to NAM. The experiments comply with the current laws of Australian Animal Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Bozzano.

Additional information

Communicated by J. P. Grassle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozzano, A., Pankhurst, P.M., Moltschaniwskyj, N.A. et al. Eye development in southern calamary, Sepioteuthis australis, embryos and hatchlings. Mar Biol 156, 1359–1373 (2009). https://doi.org/10.1007/s00227-009-1177-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1177-2

Keywords

Navigation