Marine Biology

, Volume 156, Issue 6, pp 1233–1240 | Cite as

Using carbon and nitrogen isotopic values of body feathers to infer inter- and intra-individual variations of seabird feeding ecology during moult

  • Audrey JaegerEmail author
  • Pierrick Blanchard
  • Pierre Richard
  • Yves Cherel
Original Paper


To determine whether stable isotope measurements of body feathers can be used to investigate the isotopic niche of moulting (inter-nesting) adult seabirds, we examined the stable carbon (δ13C) and nitrogen (δ15N) isotopic composition of body feathers of breeding wandering albatrosses (Diomedea exulans) from Crozet Islands, southern Indian Ocean. First we showed that the isotopic composition of body feathers was not significantly different from that of wing feathers, being thus a safe alternative to flight feathers whose collection impairs the birds’ flying ability. Second, we looked at the variances in δ13C and δ15N values resulting from the isotopic measurement of a single feather, four different feathers, and a pool of four feathers per bird, to delineate the best isotopic analytical procedure. A two-step protocol is proposed that allows investigating both the intra- and inter-individual components of the niche width of the species. In a first step, isotopic measurements on a single feather per bird are used to define isotopic specialist from isotopic generalist populations. In a second step and for generalist populations only, measurements on additional (three) feathers per bird are used to delineate type A from type B isotopic generalists (Bearhop et al. in J Anim Ecol 73:1007–1012, 2004). Third, from a biological point of view, our data showed different moulting isotopic niches for adult males and females, and also within female wandering albatrosses. Since the isotopic composition of body feathers in this species reflects that of wing feathers, our results suggest that, after validation, body feathers have the potential for investigating the foraging ecology of other Procellariiforms and seabirds during the poorly known inter-nesting period.


Isotopic Composition Isotopic Signature Isotopic Niche Body Feather Wing Feather 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank G. Guillou for running stable isotope samples. The present work was supported financially and logistically by the program REMIGE-ANR Biodiversité 2005-011, the Institut Polaire Français Paul Emile Victor (IPEV, programme no. 109, H. Weimerskirch), and the Terres Australes et Antarctiques Françaises (TAAF).


  1. Barbraud C, Weimerskirch H (2003) Climate and density shape population dynamics of a marine top predator. Proc R Soc Lond B Biol Sci 270:2111–2116. doi: CrossRefGoogle Scholar
  2. Bearhop S, Thompson DR, Waldron S, Russell IC, Alexander G, Furness RW (1999) Stable isotopes indicate the extent of freshwater feeding by cormorants Phalacrocorax carbo shot at inland fisheries in England. J Appl Ecol 36:75–84. doi: CrossRefGoogle Scholar
  3. Bearhop S, Phillips RA, Thompson DR, Waldron S, Furness RW (2000) Variability in mercury concentrations of great skuas Catharacta skua: the influence of colony, diet and trophic status inferred from stable isotope signatures. Mar Ecol Prog Ser 195:261–268. doi: CrossRefGoogle Scholar
  4. Bearhop S, Waldron S, Votier SC, Furness RW (2002) Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol Biochem Zool 75:451–458. doi: CrossRefGoogle Scholar
  5. Bearhop S, Adams CE, Waldron S, Fuller RA, MacLeod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012. doi: CrossRefGoogle Scholar
  6. Becker BH, Newman SH, Inglis S, Beissinger SR (2007) Diet-feather stable isotope (δ15N and δ13C) fractionation in common murres and other seabirds. Condor 109:451–456. doi:[451:DSINAC]2.0.CO;2 CrossRefGoogle Scholar
  7. BirdLife International (2008)
  8. Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28. doi: CrossRefGoogle Scholar
  9. Bridge ES (2006) Influences of morphology and behavior on wing-molt strategies in seabirds. Mar Ornithol 34:7–19Google Scholar
  10. Cherel Y, Hobson KA (2007) Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar Ecol Prog Ser 329:281–287. doi: CrossRefGoogle Scholar
  11. Cherel Y, Hobson KA, Weimerskirch H (2000) Using stable-isotope analysis of feathers to distinguish moulting and breeding origins of seabirds. Oecologia 122:155–162. doi: CrossRefGoogle Scholar
  12. Cherel Y, Bocher P, Trouve C, Weimerskirch H (2002) Diet and feeding ecology of blue petrels Halobaena caerulea at Iles Kerguelen, Southern Indian Ocean. Mar Ecol Prog Ser 228:283–299. doi: CrossRefGoogle Scholar
  13. Cherel Y, Phillips RA, Hobson KA, McGill R (2006) Stable isotope evidence of diverse species-specific and individual wintering strategies in seabirds. Biol Lett 2:301–303. doi: CrossRefGoogle Scholar
  14. Cherel Y, Hobson KA, Guinet C, Vanpé C (2007) Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialisation in diving predators from the Southern Ocean. J Anim Ecol 76:826–836. doi: CrossRefGoogle Scholar
  15. Cherel Y, Le Corre M, Jaquemet S, Ménard F, Richard P, Weimerskirch H (2008) Resource partitioning within a tropical seabird community: new information from stable isotopes. Mar Ecol Prog Ser 366:281–291. doi: CrossRefGoogle Scholar
  16. Croxall JP, Silk JRD, Phillips RA, Afanasyev V, Briggs DR (2005) Global circumnavigations: tracking year-round ranges of nonbreeding albatrosses. Science 307:249–250. doi: CrossRefGoogle Scholar
  17. Davoren GK, Montevecchi WA, Anderson JT (2002) Scale-dependent associations of predators and prey: constraints imposed by flightlessness of common murres. Mar Ecol Prog Ser 245:259–272. doi: CrossRefGoogle Scholar
  18. François R, Altabet MA, Goericke R (1993) Changes in the δ13C of surface water particulate matter across the Subtropical Convergence in the SW Indian Ocean. Global Biogeochem Cycles 7:627–644. doi: CrossRefGoogle Scholar
  19. Grémillet D, Wilson RP, Wanless S, Chater T (2000) Black-browed albatrosses, international fisheries and the Patagonian shelf. Mar Ecol Prog Ser 195:269–280. doi: CrossRefGoogle Scholar
  20. Grosbois V, Thompson PM (2005) North Atlantic climate variation influences survival in adult fulmars. Oikos 109:273–290. doi: CrossRefGoogle Scholar
  21. Hebert CE, Bur M, Sherman D, Shutt JL (2008) Sulfur isotopes link overwinter habitat use and breeding condition in double-crested cormorants. Ecol Appl 18:561–567. doi: CrossRefGoogle Scholar
  22. Hedd A, Montevecchi WA (2006) Diet and trophic position of Leach’s storm-petrel Oceanodroma leucorhoa during breeding and moult, inferred from stable isotope analysis of feathers. Mar Ecol Prog Ser 322:291–301. doi: CrossRefGoogle Scholar
  23. Hobson KA, Clark RG (1992) Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor 94:181–188. doi: CrossRefGoogle Scholar
  24. Jardine TD, Cunjak RA (2005) Analytical error in stable isotope ecology. Oecologia 144:528–533. doi: CrossRefGoogle Scholar
  25. Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121CrossRefGoogle Scholar
  26. McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390. doi: CrossRefGoogle Scholar
  27. Mill AC, Sweeting CJ, Barnes C, Al-Habsi SH, MacNeil MA (2008) Mass-spectrometer bias in stable isotope ecology. Limnol Oceanogr Methods 6:34–39CrossRefGoogle Scholar
  28. Newsome SD, Martinez del Rio C, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436CrossRefGoogle Scholar
  29. Nicholls DG, Murray D, Battam H, Robertson G, Moors P, Butcher E, Hildebrandt M (1995) Satellite tracking of the wandering albatross Diomedea exulans around Australia and in the Indian Ocean. Emu 95:223–230CrossRefGoogle Scholar
  30. Norris DR, Arcese P, Preikshot D, Bertram DF, Kyser TK (2007) Diet reconstruction and historic population dynamics in a threatened seabird. J Appl Ecol 44:875–884. doi: CrossRefGoogle Scholar
  31. Park YH, Gambéroni L (1997) Cross-frontal exchange of Antarctic Intermediate Water and Antarctic Bottom Water in the Crozet Basin. Deep Sea Res Part II Top Stud Oceanogr 44:963–986. doi: CrossRefGoogle Scholar
  32. Pinaud D, Cherel Y, Weimerskirch H (2005) Effect of environmental variability on habitat selection, diet, provisioning behaviour and chick growth in yellow-nosed albatrosses. Mar Ecol Prog Ser 298:295–304. doi: CrossRefGoogle Scholar
  33. Prince PA, Croxall JP, Trathan PN, Wood AG (1998) The pelagic distribution of South Georgia albatrosses and their relationships with fisheries. In: Robertson G, Gales R (eds) Albatross biology and conservation. Surrey Beatty and Sons, Chipping Norton, Australia, pp 137–167Google Scholar
  34. Quillfeldt P, McGill RAR, Furness RW (2005) Diet and foraging areas of Southern Ocean seabirds and their prey inferred from stable isotopes: review and case study of Wilson’s storm-petrel. Mar Ecol Prog Ser 295:295–304. doi: CrossRefGoogle Scholar
  35. Rolland V, Barbraud C, Weimerskirch H (2008) Combined effects of fisheries and climate on a migratory long-lived marine predator. J Appl Ecol 45:4–13CrossRefGoogle Scholar
  36. Thompson DR, Furness RW (1995) Stable-isotope ratios of carbon and nitrogen in feathers indicate seasonal dietary shifts in northern fulmars. Auk 112:493–498CrossRefGoogle Scholar
  37. Thompson DR, Furness RW, Lewis SA (1995) Diets and long-term changes in δ15N and δ13C values in northern fulmars Fulmarus glacialis from two northeast Atlantic colonies. Mar Ecol Prog Ser 125:3–11. doi: CrossRefGoogle Scholar
  38. Tickell WLN (1968) The biology of the great albatrosses Diomedea exulans and D. epomophora. Antarct Res Ser 12:1–55Google Scholar
  39. Trull TW, Armand L (2001) Insights into Southern Ocean carbon export from the δ13C of particles and dissolved inorganic carbon during the SOIREE iron release experiment. Deep Sea Res Part II Top Stud Oceanogr 48:2655–2680. doi: CrossRefGoogle Scholar
  40. Warham J (1990) The petrels: their ecology and breeding systems. Academic Press, LondonGoogle Scholar
  41. Warham J (1996) The behaviour population biology and physiology of the petrels. Academic Press, LondonGoogle Scholar
  42. Weimerskirch H (1991) Sex-specific differences in molt strategy in relation to breeding in the wandering albatross. Condor 93:731–737. doi: CrossRefGoogle Scholar
  43. Weimerskirch H, Jouventin P (1987) Population dynamics of the wandering albatross, Diomedea exulans, of the Crozet Islands: causes and consequences of the population decline. Oikos 49:315–322. doi: CrossRefGoogle Scholar
  44. Weimerskirch H, Wilson RP (2000) Oceanic respite for wandering albatrosses. Nature 406:955–956. doi: CrossRefGoogle Scholar
  45. Weimerskirch H, Jouventin P, Mougin JL, Stahl JC, Van Beveren M (1985) Banding recoveries and the dispersal of seabirds breeding in French Austral and Antarctic Territories. Emu 85:22–33CrossRefGoogle Scholar
  46. Weimerskirch H, Salamolard M, Sarrazin F, Jouventin P (1993) Foraging strategy of wandering albatrosses through the breeding season: a study using satellite telemetry. Auk 110:325–342Google Scholar
  47. Weimerskirch H, Chastel O, Ackermann L (1995) Adjustment of parental effort to manipulated foraging ability in a pelagic seabird, the thin-billed prion Pachyptila belcheri. Behav Ecol Sociobiol 36:11–16. doi: CrossRefGoogle Scholar
  48. Weimerskirch H, Cherel Y, Cuénot-Chaillet F, Ridoux V (1997) Alternative foraging strategies and resource allocation by male and female wandering albatrosses. Ecology 78:2051–2063CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Audrey Jaeger
    • 1
    Email author
  • Pierrick Blanchard
    • 2
  • Pierre Richard
    • 3
  • Yves Cherel
    • 1
  1. 1.Centre d’Etudes Biologiques de Chizé, UPR 1934 du CNRSVilliers-en-BoisFrance
  2. 2.Laboratoire Evolution et Diversité BiologiqueUMR 5174 du CNRS, Université Paul Sabatier Toulouse IIIToulouse Cedex 9France
  3. 3.Laboratoire Littoral, Environnement et SociétésUMR 6250 du CNRS, Université de La RochelleLa RochelleFrance

Personalised recommendations