Marine Biology

, Volume 156, Issue 6, pp 1159–1170 | Cite as

Sex in the beach: spermatophores, dermal insemination and 3D sperm ultrastructure of the aphallic mesopsammic Pontohedyle milaschewitchii (Acochlidia, Opisthobranchia, Gastropoda)

  • Katharina Maria JörgerEmail author
  • Martin Heß
  • Timea Pamela Neusser
  • Michael Schrödl
Original Paper


Sperm transfer via spermatophores is common among organisms living in mesopsammic environments, and is generally considered to be an evolutionary adaptation to reproductive constraints in this habitat. However, conclusions about adaptations and trends in insemination across all interstitial taxa cannot be certain as differences in mode of insemination via spermatophores do exist, details of insemination are lacking for many species, and evolutionary relationships in many cases are poorly known. Opisthobranch gastropods typically transfer sperm via reciprocal copulation, but many mesopsammic Acochlidia are aphallic and transfer sperm via spermatophores, supposedly combined with dermal fertilisation. The present study investigates structural and functional aspects of sperm transfer in the Mediterranean microhedylacean acochlid Pontohedyle milaschewitchii. We show that spermatophore attachment is imprecise. We describe the histology and ultrastructure of the two-layered spermatophore and discuss possible functions. Using DAPI staining of the (sperm-) nuclei, we document true dermal insemination in situ under the fluorescence microscope. Ultrastructural investigation and computer-based 3D reconstruction from TEM sections visualise the entire spermatozoon including the exceptionally elongate, screw-like keeled sperm nucleus. An acrosomal complex was not detected. From their special structure and behaviour we conclude that sperm penetrate epithelia, tissues and cells mechanically by drilling rather than lysis. Among opisthobranchs, dermal insemination is limited to mesopsammic acochlidian species. In this spatially limited environment, a rapid though imprecise and potentially harmful dermal insemination is discussed as a key evolutionary innovation that could have enabled the species diversification of microhedylacean acochlidians.


Sperm Nucleus Genital Pore Sperm Transfer Genital Opening Acrosomal Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We wish to thank Eva Lodde (ZSM) and Heidi Gensler (Department Biology I, LMU) for expert help in histological techniques. Roland Melzer (ZSM) is thanked for supporting DAPI staining and Roland Meyer (ZSM) for his company and help in collecting specimens. We also thank Thomas Heinzeller and Birgit Aschauer (Anatomische Anstalt, LMU) for the provision of the TEM. The study was partially financed by a grant of the German Research Foundation to MS (DFG SCHR 667-4). Computer-based 3D-reconstruction using AMIRA® software was supported by the GeoBioCenter LMU/Germany. Three anonymous reviewers are acknowledged for helpful comments on the manuscript.


  1. Ax P (1969) Populationsdynamik, Lebenszyklen und Fortpflanzungsbiologie der Mikrofauna des Meeressandes. Zool Anz 32(Suppl):66–113Google Scholar
  2. Brown R (1983) Spermatophore transfer and subsequent sperm development in a homalorhagid kinorhynch. Zool Scr 12:257–266. doi: CrossRefGoogle Scholar
  3. Buckland-Nicks J, Koss R, Chia F-S (1988) The elusive acrosome of chiton sperm. Invertebr Reprod Dev 13:193–198CrossRefGoogle Scholar
  4. Chambers LA (1934) Studies on the organs of reproduction in the nudibranchiate mollusks. Bull Am Mus Nat Hist 116:599–641Google Scholar
  5. Clark WC (1991) Sperm transfer mechanisms: some correlates and consequences. NZ J Zool 8:49–65CrossRefGoogle Scholar
  6. Fahey SJ, Healy JM (2003) Sperm ultrastructure in the nudibranch genus Halgerda with reference to other Discodorididae and to Chromodorididae (Mollusca: Opisthobranchia). J Morphol 257:9–21. doi: CrossRefGoogle Scholar
  7. Franzén A (1955) Comparative morphological investigations into the spermatogenesis among Mollusca. Zool Bidr Upps 30:399–455Google Scholar
  8. Franzén A (1983) Ultrastructural studies of spermatozoa in three bivalve species with notes on evolution of elongated sperm nucleus in primitive spermatozoa. Gamete Res 7:199–214. doi: CrossRefGoogle Scholar
  9. Ghiselin MT (1963) On the functional and comparative anatomy of Runcina setoensis Baba, an opisthobranch gastropod. Publ Seto Mar Biol Lab 11:389–398CrossRefGoogle Scholar
  10. Ghiselin MT (1966) Reproductive function and the phylogeny of opisthobranch gastropods. Malacologia 3:327–378Google Scholar
  11. Haase M, Karlsson A (2000) Mating and the inferred function of the genital system of the nudibranch, Aeolidiella glauca (Gastropoda: Opisthobranchia: Aeolidioidea). Invertebr Biol 119:287–298CrossRefGoogle Scholar
  12. Healy JM (1982) Ultrastructure of the spermatozoon of an opisthobranch, Tornatina sp. (Mollusca, Gastropoda, Retusidae). Zool Scr 11:221–226. doi: CrossRefGoogle Scholar
  13. Healy JM (1993) Comparative sperm ultrastructure and spermiogenesis in basal heterobranch gastropods (Valvatoidea, Architectonicoidea, Rissoelloidea, Omalogyroidea, Pyramidelloidea) (Mollusca). Zool Scr 22:263–276. doi: CrossRefGoogle Scholar
  14. Healy JM, Willan RC (1984) Ultrastructure and phylogenetic significance of notaspidean spermatozoa (Mollusca, Gastropoda, Opisthobranchia). Zool Scr 13:107–120. doi: CrossRefGoogle Scholar
  15. Healy JM, Willan RC (1991) Nudibranch spermatozoa: comparative ultrastructure and systematic importance. Veliger 34:134–165Google Scholar
  16. Jörger KM, Neusser TP, Haszprunar G, Schrödl M (2008) Undersized and underestimated: 3D-visualization of the Mediterranean interstitial acochlidian gastropod Pontohedyle milaschewitchii (Kowalevsky, 1901). Org Divers Evol 8:194–214. doi: CrossRefGoogle Scholar
  17. Karlsson A, Haase M (2002) The enigmatic mating behaviour and reproduction of a simultaneous hermaphrodite, the nudibranch Aeolidiella glauca (Gastropoda, Opisthobranchia). Can J Zool 80:260–270. doi: CrossRefGoogle Scholar
  18. Kress A (1985) A structural analysis of the spermatophore of Runcina ferruginea Kress (Opisthobranchia: Cephalaspidea). J Mar Biol Assoc UK 65:337–342CrossRefGoogle Scholar
  19. Kubo M, Ishikawa M (1981) Organization of the acrosome and helical structures in sperm of the aplysiid, Aplysia kurodai (Gastropoda, Opisthobranchia). Differentiation 20:131–140. doi: CrossRefGoogle Scholar
  20. Mann T (ed) (1984) Spermatophores: development, structure, biochemical attributes and role in the transfer of spermatozoa. Springer-Verlag, BerlinGoogle Scholar
  21. Marcus E (1953) Three Brazilian sand-Opisthobranchia. Bol Fac Filos Ci Letr Univ Sao Paulo 164:165–203Google Scholar
  22. Morse MP (1976) Hedylopsis riseri sp. n., a new interstitial mollusc from the New England Coast (Opisthobranchia, Acochlidiacea). Zool Scr 5:221–229. doi: CrossRefGoogle Scholar
  23. Morse MP (1994) Current knowledge of reproductive biology in two taxa of interstitial molluscs (class Gastropoda: order Acochlidiacea and class Aplacophora: order Neomeniomorpha). In: Wilson WH, Stricker SA, Shinn GL (eds) Reproduction and development of marine invertebrates. John Hopkins University Press, Baltimore, pp 195–205Google Scholar
  24. Neusser TP, Schrödl M (2007) Tantulum elegans reloaded: a computer-based 3D-visualization of the anatomy of a Caribbean freshwater acochlidian gastropod. Invertebr Biol 126:18–39. doi: CrossRefGoogle Scholar
  25. Neusser TP, Heß M, Haszprunar G, Schrödl M (2007) Sperm ultrastructure of Microhedyle remanei, an interstitial acochlidian gastropod with dermal fertilization. J Mar Biol Assoc UK 87:747–754CrossRefGoogle Scholar
  26. Perrier R, Fischer H (1914) Sur l’existence de spermatophores chez quelques Opisthobranches. C R Hebd Seances Acad Sci 158:1366–1369Google Scholar
  27. Poizat C (1986) Life history observations on a few interstitial opisthobranch gastropods from the gulf of Marseilles, Bouche du Rhone, France. Bolm Zool 10:99–121CrossRefGoogle Scholar
  28. Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212. doi: CrossRefGoogle Scholar
  29. Rice SA (1978) Spermatophores and sperm transfer in spionid polychaetes. Trans Am Microsc Soc 97:160–170. doi: CrossRefGoogle Scholar
  30. Richardson KC, Jarett L, Finke EH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol 35:313–323CrossRefGoogle Scholar
  31. Schmekel L (1985) Aspects of evolution within the opisthobranchs. In: Truman ER, Clarke MR (eds) The Mollusca. Academic, London, pp 221–267Google Scholar
  32. Schrödl M (2006) Techniques for collecting interstitial opisthobranchs., Sea Slug Forum. Australian Museum, Sydney
  33. Schrödl M, Neusser TP (2009) Towards a phylogeny and evolution of Acochlidia. Zool J Linn Soc (in press)Google Scholar
  34. Sommerfeldt N, Schrödl M (2005) Microanatomy of Hedylopsis ballantinei, a new interstitial acochlidian gastropod from the Red Sea, and its significance for phylogeny. J Moll Stud 71:153–165. doi: CrossRefGoogle Scholar
  35. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43. doi: CrossRefGoogle Scholar
  36. Swedmark B (1959) On the biology of sexual reproduction of the interstitial fauna of marine sand. In: Proceedings of the 15th International Congress of Zoology, London, pp 327–329Google Scholar
  37. Swedmark B (1964) The interstitial fauna of marine sand. Biol Rev Camb Philos Soc 39:1–42. doi: CrossRefGoogle Scholar
  38. Swedmark B (1968a) The biology of interstitial Mollusca. Symp Zool Soc Lond 22:135–149Google Scholar
  39. Swedmark B (1968b) Deux espèces nouvelles d’acochlidiacées (mollusques opisthobranches) de la faune interstitielle marine. Cah Biol Mar 9:175–186Google Scholar
  40. Teuchert G (1968) Zur Fortpflanzung und Entwicklung der Macrodasyoidea (Gastrotricha). Z Morphol Tiere 63:343–418. doi: CrossRefGoogle Scholar
  41. Thompson TE (1973) Euthyneuran and other molluscan spermatozoa. Malacologia 14:167–206Google Scholar
  42. von Ihering H (1886) Beiträge zur Kenntnis der Nudibranchien des Mittelmeeres. II 4. Die Polyceraden. Malakozool Bl 8:12–48Google Scholar
  43. Westheide W, Ax P (1965) Bildung und Übertragung von Spermatophoren bei Polychaeten (Untersuchungen an Hesionides arenarius Friedrich). Zool Anz 28(Suppl):196–203Google Scholar
  44. Westheide W, Wawra E (1974) Organisation, Systematik und Biologie von Microhedyle cryptophthalma nov. spec. (Gastropoda, Opisthobranchia) aus dem Brandungsstrand des Mittelmeeres. Helgoländer wiss Meeresunters 26:27–41CrossRefGoogle Scholar
  45. Wilson NG, Healy JM (2002) Comparative sperm ultrastructure in five genera of the nudibranch family Chromodorididae (Gastropoda: Opisthobranchia). J Moll Stud 68:133–145. doi: CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Katharina Maria Jörger
    • 1
    Email author
  • Martin Heß
    • 2
  • Timea Pamela Neusser
    • 1
  • Michael Schrödl
    • 1
  1. 1.Zoologische Staatssammlung MünchenMunichGermany
  2. 2.Department Biology ILudwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany

Personalised recommendations