Marine Biology

, Volume 155, Issue 1, pp 105–112 | Cite as

Phylogenetic analyses of potentially free-living Symbiodinium spp. isolated from coral reef sand in Okinawa, Japan

  • Mamiko HiroseEmail author
  • James D. Reimer
  • Michio Hidaka
  • Shoichiro Suda
Original Paper


The existence of “free-living” Symbiodinium that can form symbioses with hosts is implied by the presence of hosts that produce Symbiodinium-free gametes and expulsion and/or expelled symbiotic algae from host. However, it is still unclear if potentially symbiotic Symbiodinium are found “free-living” in the coral reef environment. Sixteen Symbiodinium strains were established from samples taken from three sampling locations of coral reef sand in Okinawa, Japan. Phylogenetic analyses of the partial large subunit ribosomal DNA (28S-rDNA) and the internal transcribed spacer of ribosomal DNA (ITS-rDNA) conclusively showed that all 16 isolates belonged to Symbiodinium clade A sensu Rowan and Powers (1991). The lack of other Symbiodinium clades besides clade A in this study may be due to other clades not being readily culturable under culture conditions used here. The new isolates could be phylogenetically divided into four groups, though no sequences were identical to previously reported Symbiodinium. Two of the four groups were closely related to symbiotic Symbiodinium clade A isolated from a variety of host species. One isolate group formed a highly supported monophyly with Symbiodinium types that have previously been characterized as “free-living”. The remaining isolate group, although within clade A, was quite divergent from other clade A Symbiodinium. These results indicate that novel diversity of free-living Symbiodinium exists in coral sand.


Coral Reef Markov Chain Monte Carlo Sand Sample Giant Clam Coral Sand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was partly supported by the twenty-first Century COE Program of the University of the Ryukyus. The authors thank Dr. Kiyotaka Takishita (JAMSTEC) for his critical comments that greatly improved the manuscript.


  1. Baghdasarian G, Muscatine L (2000) Preferential expulsion of dividing algal cells as mechanism for regulating alga-cnidarian symbiosis. Biol Bull 199:278–286. doi: 10.2307/1543184 CrossRefGoogle Scholar
  2. Baillie BK, Belda-Baillie CA, Maruyama T (2000) Conspecificity and Indo-Pacific distribution of Symbiodinium genotypes (Dinophyceae) from giant clams. J Phycol 36:1153–1161. doi: 10.1046/j.1529-8817.2000.00010.x CrossRefGoogle Scholar
  3. Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689. doi: 10.1146/annurev.ecolsys.34.011802.132417 CrossRefGoogle Scholar
  4. Baker AC, Rowan R (1997) Diversity of symbiotic dinoflagellates (zooxanthellae) in screlactinian corals of the Caribbean and eastern Pacific. Proceeding 8th International Coral Reef Symposium 2:1301–1306Google Scholar
  5. Bhagooli R, Hidaka M (2004) Release of zooxanthellae with intact photosynthetic activity by the coral Galaxea fascicularis in response to high temperature stress. Mar Biol (Berl) 145:329–337. doi: 10.1007/s00227-004-1309-7 CrossRefGoogle Scholar
  6. Carlos AA, Baillie BK, Kawachi M, Maruyama T (1999) Phylogenetic position of Symbiodinium (Dinophyceae) isolates from tridacnids (Bivalvia), cardiids (Bivalvia), a sponge (Porifera), a soft coral (Anthozoa), and a free-living strain. J Phycol 35:1054–1062. doi: 10.1046/j.1529-8817.1999.3551054.x CrossRefGoogle Scholar
  7. Chang FH (1983) Winter phytoplankton and microzooplankton populations off the coast of Westland, New Zealand. NZ J Mar Freshw Res 17:279–304CrossRefGoogle Scholar
  8. Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34. doi: 10.1016/j.protis.2005.02.004 CrossRefGoogle Scholar
  9. Coffroth MA, Lasker HR, Diamond ME, Bruenn JA, Bermingham E (1992) DNA fingerprints of a gorgonian coral: a method for detecting clonal structure in a vegetative species. Mar Biol (Berl) 114:317–325. doi: 10.1007/BF00349534 CrossRefGoogle Scholar
  10. Coffroth MA, Lewis CF, Santos SR, Weaver JL (2006) Environmental populations of symbiotic dinoflagellates in the genus Symbiodinium can initiate symbioses with reef cnidarians. Curr Biol 16:R985–R987. doi: 10.1016/j.cub.2006.10.049 CrossRefGoogle Scholar
  11. Fukami H, Budd AF, Pauly G, Sole-Cava A, Chen CA, Iwao K et al (2004) Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427:832–835. doi: 10.1038/nature02339 CrossRefGoogle Scholar
  12. Gates RD, Baghdasarian G, Muscatine L (1992) Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. Biol Bull 182:324–332. doi: 10.2307/1542252 CrossRefGoogle Scholar
  13. Gou W, Sun J, Li X, Zhen Y, Xin Z, Yu Z et al (2003) Phylogenetic analysis of a free-living strain of Symbiodinium isolated from Jiaohou Bay, P.R. China. J Exp Mar Biol Ecol 296:135–144. doi: 10.1016/S0022-0981(03)00242-9 CrossRefGoogle Scholar
  14. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. doi: 10.1080/10635150390235520 CrossRefGoogle Scholar
  15. Hirose E, Iwai K, Maruyama T (2006) Establishment of the photosymbiosis in the early ontogeny of three giant clams. Mar Biol (Berl) 148:551–558. doi: 10.1007/s00227-005-0119-x CrossRefGoogle Scholar
  16. Ishikura M, Hagiwara K, Takishita K, Haga M, Iwai K, Maruyama T (2004) Isolation of new Symbiodinium strains from Tridacnid giant clam (Tridacna crocea) and sea slug (Pteraeolidia ianthina) using culture medium containing giant clam tissue homogenate. Mar Biotechnol 6:378–385. doi: 10.1007/s10126-004-1800-7 CrossRefGoogle Scholar
  17. LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the internal transcribed spacer region: in search of a “species” level maker. J Phycol 37:866–880. doi: 10.1046/j.1529-8817.2001.01031.x CrossRefGoogle Scholar
  18. LaJeunesse TC (2004) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581. doi: 10.1093/molbev/msi042 CrossRefGoogle Scholar
  19. LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern great barrier reef corals relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054CrossRefGoogle Scholar
  20. LaJeunesse TC, Thornhill DJ, Cox E, Stanton F, Fitt WK, Schmidt GW (2004a) High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs 23:596–603Google Scholar
  21. LaJeunesse TC, Bhagooli R, Hidaka M, de Vantier L, Done T, Schmidt GW et al (2004b) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161. doi: 10.3354/meps284147 CrossRefGoogle Scholar
  22. Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494. doi: 10.1126/science.1095733 CrossRefGoogle Scholar
  23. Loeblich AR, Sherley JL (1979) Observations on the theca of the mobile phase of free-living and symbiotic isolates of Zooxanthella microadriaticum (Freudenthal) Comb. nov. J Mar Biol Assoc UK 59:195–205CrossRefGoogle Scholar
  24. Loh WK, Toha L, Carter D, Hoegh-Guldberg O (2001) Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Mar Ecol Prog Ser 227:97–107. doi: 10.3354/meps222097 CrossRefGoogle Scholar
  25. Magalon H, Flot JF, Baudry E (2007) Molecular identification of symbiotic dinoflafellates in Pacific corals in the genus Pocillopora. Coral Reefs 26:551–558. doi: 10.1007/s00338-007-0215-0 CrossRefGoogle Scholar
  26. Maruyama T, Heslinga GA (1997) Fecal discharge of zooxanthellae in the giant clam Tridacna derasa, with reference to their in situ growth rate. Mar Biol (Berl) 127:473–477. doi: 10.1007/s002270050035 CrossRefGoogle Scholar
  27. Moore RB (2006) Molecular ecology and phylogeny of protistan algal symbionts from corals. Ph.D. thesis, University of Sydney, p 390Google Scholar
  28. Ono S, Reimer JD, Tsukahara J (2005) Reproduction of Zoanthus sansibaricus in the infra-littoral zone at Taisho Lava Field, Sakurajima, Kagoshima, Japan. Zool Sci 22:247–255. doi: 10.2108/zsj.22.247 CrossRefGoogle Scholar
  29. van Oppen MJH, Palstra FP, Piquet AMT, Miller DJ (2001) Patterns of coral-dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. Proc R Soc Lond B Biol Sci 268:1759–1767. doi: 10.1098/rspb.2001.1733 CrossRefGoogle Scholar
  30. Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30. doi: 10.1016/j.ympev.2005.04.028 CrossRefGoogle Scholar
  31. Ralph PJ, Gademann R, Larkum AWD (2001) Zooxanthellae expelled from bleached corals at 33°C are photosynthetically competent. Mar Ecol Prog Ser 220:163–168. doi: 10.3354/meps220163 CrossRefGoogle Scholar
  32. Reimer JD, Takishita K, Ono S, Maruyama T, Tsukahara J (2006) Latitudinal and intracolony ITS-rDNA sequence variation in the symbiotic dinoflagellate genus Symbiodinium (Dinophyceae) in Zoanthus sansibaricus (Anthozoa: Hexacorallia). Phycol Res 54:122–132CrossRefGoogle Scholar
  33. Robinson JDR, Warner ME (2006) Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol 43:568–579. doi: 10.1111/j.1529-8817.2006.00232.x CrossRefGoogle Scholar
  34. Rodriguez F, Oliver JL, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501. doi: 10.1016/S0022-5193(05)80104-3 CrossRefGoogle Scholar
  35. Rodriguez-Lanetty M, Loh W, Cater D, Hoegh-Guldberg O (2001) Latitudinal variability in symbiont specificity within the widespread scleractinian coral Plesiastrea versipora. Mar Biol (Berl) 138:1175–1181. doi: 10.1007/s002270100536 CrossRefGoogle Scholar
  36. Ronquist F, Huelsenbeck JP (2003) Bayesian phylogenetic inference under mixed models. Bioinformatics Oxf 19:1572–1574. doi: 10.1093/bioinformatics/btg180 CrossRefGoogle Scholar
  37. Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351. doi: 10.1126/science.251.4999.1348 CrossRefGoogle Scholar
  38. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedPubMedCentralGoogle Scholar
  39. Santos SR, Taylor DJ, Coffroth MA (2001) Genetic comparisons of freshly isolated versus cultured symbiotic dinoflagellates: Implications for extrapolating to the intact symbiosis. J Phycol 37:900–912. doi: 10.1046/j.1529-8817.2001.00194.x CrossRefGoogle Scholar
  40. Santos SR, Taylor DJ, Kinzie RAIII, Hidaka M, Sakai K, Coffroth MA (2002) Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Mol Phylogenet Evol 23:97–111. doi: 10.1016/S1055-7903(02)00010-6 CrossRefGoogle Scholar
  41. Stimson J, Kinzie RAIII (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74. doi: 10.1016/S0022-0981(05)80006-1 CrossRefGoogle Scholar
  42. Suwa R, Hirose M, Hidaka M (2008) Seasonal fluctuation in zooxanthella composition and photo-physiology in the corals Pavona divaricata and P. decussata in Okinawa. Mar Ecol Prog Ser 361:129–137CrossRefGoogle Scholar
  43. Swofford D (2000) PAUP* 4.0b7a, Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, MAGoogle Scholar
  44. Taylor DL (1974) Symbiotic marine algae: taxonomy and biological fitness. In: Vernberg WE (ed) Symbiosis in the sea. University of Carolina Press, Columbia, pp 245–262Google Scholar
  45. Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Haggblom M et al (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535. doi: 10.1073/pnas.0402907101 CrossRefGoogle Scholar
  46. Thornhill DJ, Daniel MW, LaJeunesse TC, Schmidt GW, Fitt WK (2006) Natural infections of aposymbiotic Cassiopea xamachana scyphistomae from environmental pools of Symbiodinium. J Exp Mar Biol Ecol 338:50–56. doi: 10.1016/j.jembe.2006.06.032 CrossRefGoogle Scholar
  47. Trench RK (1987) Dinoflagellates in non parasitic symbioses. In: Taylor FJD (ed) The biology of dinoflagellates. Blackwell Scientific Publications, Oxford, pp 530–570Google Scholar
  48. Zardoya R, Costas E, López-Rodas VL, Garrido-Pertierra A, Bautista JM (1995) Revised dinoflagellate phylogeny inferred from molecular analysis of large-subunit ribosomal RNA gene sequences. J Mol Evol 41:637–645PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Mamiko Hirose
    • 1
    Email author
  • James D. Reimer
    • 1
    • 2
  • Michio Hidaka
    • 1
  • Shoichiro Suda
    • 1
  1. 1.Department of Chemistry, Biology and Marine ScienceUniversity of the RyukyusNishiharaJapan
  2. 2.Research Program for Marine Biology and Ecology, Extremobiosphere Research CenterJapan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan

Personalised recommendations